default search action
Peter A. Flach
Person information
- affiliation: University of Bristol, Department of Computer Science, UK
- affiliation: Tilburg University, The Netherlands
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j61]Kacper Sokol, Peter A. Flach:
Interpretable representations in explainable AI: from theory to practice. Data Min. Knowl. Discov. 38(5): 3102-3140 (2024) - [c116]Paul-Gauthier Noé, Miquel Perelló-Nieto, Jean-François Bonastre, Peter A. Flach:
Explaining a Probabilistic Prediction on the Simplex with Shapley Compositions. ECAI 2024: 1124-1131 - [i35]Paul-Gauthier Noé, Miquel Perelló-Nieto, Jean-François Bonastre, Peter A. Flach:
Explaining a probabilistic prediction on the simplex with Shapley compositions. CoRR abs/2408.01382 (2024) - 2023
- [j60]Katarzyna Stawarz, Dmitri S. Katz, Amid Ayobi, Paul Marshall, Taku Yamagata, Raúl Santos-Rodríguez, Peter A. Flach, Aisling Ann O'Kane:
Co-designing opportunities for Human-Centred Machine Learning in supporting Type 1 diabetes decision-making. Int. J. Hum. Comput. Stud. 173: 103003 (2023) - [j59]Haixia Bi, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Peter A. Flach, Ian Craddock:
An active semi-supervised deep learning model for human activity recognition. J. Ambient Intell. Humaniz. Comput. 14(10): 13049-13065 (2023) - [j58]Telmo de Menezes e Silva Filho, Hao Song, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Meelis Kull, Peter A. Flach:
Classifier calibration: a survey on how to assess and improve predicted class probabilities. Mach. Learn. 112(9): 3211-3260 (2023) - [c115]Matthew Clifford, Jonathan Erskine, Alexander Hepburn, Peter A. Flach, Raúl Santos-Rodríguez:
Reconciling Training and Evaluation Objectives in Location Agnostic Surrogate Explainers. CIKM 2023: 3833-3837 - [c114]Taku Yamagata, Emma L. Tonkin, Benjamin Arana Sanchez, Ian Craddock, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Weisong Yang, Peter A. Flach:
When the Ground Truth is not True: Modelling Human Biases in Temporal Annotations. PerCom Workshops 2023: 527-533 - [p1]Peter A. Flach, Kacper Sokol, Jan Wielemaker:
Simply Logical - The First Three Decades. Prolog: The Next 50 Years 2023: 184-193 - [i34]Taku Yamagata, Emma L. Tonkin, Benjamin Arana Sanchez, Ian Craddock, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Weisong Yang, Peter A. Flach:
When the Ground Truth is not True: Modelling Human Biases in Temporal Annotations. CoRR abs/2302.02706 (2023) - [i33]Tashi Namgyal, Peter A. Flach, Raúl Santos-Rodríguez:
MIDI-Draw: Sketching to Control Melody Generation. CoRR abs/2305.11605 (2023) - [i32]Torty Sivill, Peter A. Flach:
Shapley Sets: Feature Attribution via Recursive Function Decomposition. CoRR abs/2307.01777 (2023) - 2022
- [j57]Peter A. Flach:
Empirical Evaluation of Predictive Models: A keynote at ECIR 2022. SIGIR Forum 56(1): 2:1-2:5 (2022) - [j56]Kacper Sokol, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python toolbox for algorithmic fairness, accountability and transparency. Softw. Impacts 14: 100406 (2022) - [c113]Torty Sivill, Peter A. Flach:
LIMESegment: Meaningful, Realistic Time Series Explanations. AISTATS 2022: 3418-3433 - [c112]Taku Yamagata, Raúl Santos-Rodríguez, Robert J. Piechocki, Peter A. Flach:
Understanding Reinforcement Learning Based Localisation as a Probabilistic Inference Algorithm. ICANN (2) 2022: 111-122 - [c111]Yu Chen, Peter A. Flach:
Self-Enhancer: A Self-supervised Framework for Low-Supervision, Drifted Data with Significant Missing Values. ICANN (4) 2022: 455-458 - [c110]Rafael Poyiadzi, Daniel Bacaicoa-Barber, Jesús Cid-Sueiro, Miquel Perelló-Nieto, Peter A. Flach, Raúl Santos-Rodríguez:
The Weak Supervision Landscape. PerCom Workshops 2022: 218-223 - [d3]Peter A. Flach, Kacper Sokol:
Simply Logical - Intelligent Reasoning by Example (Fully Interactive Online Edition). Zenodo, 2022 - [d2]Kacper Sokol, Alexander Hepburn, Raúl Santos-Rodriguez, Peter A. Flach:
What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components. Zenodo, 2022 - [i31]Rafael Poyiadzi, Daniel Bacaicoa-Barber, Jesús Cid-Sueiro, Miquel Perelló-Nieto, Peter A. Flach, Raúl Santos-Rodríguez:
The Weak Supervision Landscape. CoRR abs/2203.16282 (2022) - [i30]Peter A. Flach, Kacper Sokol:
Simply Logical - Intelligent Reasoning by Example (Fully Interactive Online Edition). CoRR abs/2208.06823 (2022) - [i29]Kacper Sokol, Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems. CoRR abs/2209.03805 (2022) - [i28]Kacper Sokol, Alexander Hepburn, Raúl Santos-Rodríguez, Peter A. Flach:
What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components. CoRR abs/2209.03813 (2022) - 2021
- [j55]Hao Song, Peter A. Flach:
Efficient and Robust Model Benchmarks with Item Response Theory and Adaptive Testing. Int. J. Interact. Multim. Artif. Intell. 6(5): 110-118 (2021) - [j54]Reem Alotaibi, Peter A. Flach:
Multi-label thresholding for cost-sensitive classification. Neurocomputing 436: 232-247 (2021) - [j53]Amid Ayobi, Katarzyna Stawarz, Dmitri S. Katz, Paul Marshall, Taku Yamagata, Raúl Santos-Rodríguez, Peter A. Flach, Aisling Ann O'Kane:
Co-Designing Personal Health? Multidisciplinary Benefits and Challenges in Informing Diabetes Self-Care Technologies. Proc. ACM Hum. Comput. Interact. 5(CSCW2): 457:1-457:26 (2021) - [j52]Haixia Bi, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Peter A. Flach:
Human Activity Recognition Based on Dynamic Active Learning. IEEE J. Biomed. Health Informatics 25(4): 922-934 (2021) - [j51]Fernando Martínez-Plumed, Lidia Contreras Ochando, Cèsar Ferri, José Hernández-Orallo, Meelis Kull, Nicolas Lachiche, María José Ramírez-Quintana, Peter A. Flach:
CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Trans. Knowl. Data Eng. 33(8): 3048-3061 (2021) - [c109]Amid Ayobi, Katarzyna Stawarz, Dmitri S. Katz, Paul Marshall, Taku Yamagata, Raúl Santos-Rodríguez, Peter A. Flach, Aisling Ann O'Kane:
Machine Learning Explanations as Boundary Objects: How AI Researchers Explain and Non-Experts Perceive Machine Learning. IUI Workshops 2021 - [i27]Yu Chen, Song Liu, Tom Diethe, Peter A. Flach:
Continual Density Ratio Estimation in an Online Setting. CoRR abs/2103.05276 (2021) - [i26]Kacper Sokol, Peter A. Flach:
You Only Write Thrice: Creating Documents, Computational Notebooks and Presentations From a Single Source. CoRR abs/2107.06639 (2021) - [i25]Stefan Radic Webster, Peter A. Flach:
Risk Sensitive Model-Based Reinforcement Learning using Uncertainty Guided Planning. CoRR abs/2111.04972 (2021) - [i24]Telmo de Menezes e Silva Filho, Hao Song, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Meelis Kull, Peter A. Flach:
Classifier Calibration: How to assess and improve predicted class probabilities: a survey. CoRR abs/2112.10327 (2021) - [i23]Kacper Sokol, Peter A. Flach:
Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence. CoRR abs/2112.14466 (2021) - 2020
- [j50]Marvin Meeng, Harm de Vries, Peter A. Flach, Siegfried Nijssen, Arno J. Knobbe:
Uni- and multivariate probability density models for numeric subgroup discovery. Intell. Data Anal. 24(6): 1403-1439 (2020) - [j49]Michael Holmes, Miquel Perelló-Nieto, Hao Song, Emma Tonkin, Sabrina Grant, Peter A. Flach:
Modelling Patient Behaviour Using IoT Sensor Data: a Case Study to Evaluate Techniques for Modelling Domestic Behaviour in Recovery from Total Hip Replacement Surgery. J. Heal. Informatics Res. 4(3): 238-260 (2020) - [j48]Kacper Sokol, Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems. J. Open Source Softw. 5(49): 1904 (2020) - [j47]Kacper Sokol, Peter A. Flach:
One Explanation Does Not Fit All. Künstliche Intell. 34(2): 235-250 (2020) - [j46]Peter A. Flach:
Reflections on reciprocity in research. Mach. Learn. 109(7): 1281-1285 (2020) - [c108]Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodríguez, Tijl De Bie, Peter A. Flach:
FACE: Feasible and Actionable Counterfactual Explanations. AIES 2020: 344-350 - [c107]Taku Yamagata, Aisling Ann O'Kane, Amid Ayobi, Dmitri S. Katz, Katarzyna Stawarz, Paul Marshall, Peter A. Flach, Raúl Santos-Rodríguez:
Model-Based Reinforcement Learning for Type 1 Diabetes Blood Glucose Control. AAI4H@ECAI 2020: 72-77 - [c106]Kacper Sokol, Peter A. Flach:
Explainability fact sheets: a framework for systematic assessment of explainable approaches. FAT* 2020: 56-67 - [c105]Haixia Bi, Raúl Santos-Rodríguez, Peter A. Flach:
Polsar Image Classification via Robust Low-Rank Feature Extraction and Markov Random Field. IGARSS 2020: 708-711 - [d1]Kacper Sokol, Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems. Zenodo, 2020 - [i22]Kacper Sokol, Peter A. Flach:
One Explanation Does Not Fit All: The Promise of Interactive Explanations for Machine Learning Transparency. CoRR abs/2001.09734 (2020) - [i21]Kacper Sokol, Peter A. Flach:
LIMEtree: Interactively Customisable Explanations Based on Local Surrogate Multi-output Regression Trees. CoRR abs/2005.01427 (2020) - [i20]Yu Chen, Tom Diethe, Peter A. Flach:
Bypassing Gradients Re-Projection with Episodic Memories in Online Continual Learning. CoRR abs/2006.11234 (2020) - [i19]Kacper Sokol, Peter A. Flach:
Towards Faithful and Meaningful Interpretable Representations. CoRR abs/2008.07007 (2020) - [i18]Taku Yamagata, Aisling Ann O'Kane, Amid Ayobi, Dmitri S. Katz, Katarzyna Stawarz, Paul Marshall, Peter A. Flach, Raúl Santos-Rodríguez:
Model-Based Reinforcement Learning for Type 1Diabetes Blood Glucose Control. CoRR abs/2010.06266 (2020)
2010 – 2019
- 2019
- [j45]Tom Wilcox, Nanlin Jin, Peter A. Flach, Joshua Thumim:
A Big Data platform for smart meter data analytics. Comput. Ind. 105: 250-259 (2019) - [j44]Cèsar Ferri, José Hernández-Orallo, Peter A. Flach:
Setting decision thresholds when operating conditions are uncertain. Data Min. Knowl. Discov. 33(4): 805-847 (2019) - [j43]Niall Twomey, Haoyan Chen, Tom Diethe, Peter A. Flach:
An application of hierarchical Gaussian processes to the detection of anomalies in star light curves. Neurocomputing 342: 152-163 (2019) - [c104]Peter A. Flach:
Performance Evaluation in Machine Learning: The Good, the Bad, the Ugly, and the Way Forward. AAAI 2019: 9808-9814 - [c103]Kacper Sokol, Peter A. Flach:
Counterfactual Explanations of Machine Learning Predictions: Opportunities and Challenges for AI Safety. SafeAI@AAAI 2019 - [c102]Kacper Sokol, Peter A. Flach:
Desiderata for Interpretability: Explaining Decision Tree Predictions with Counterfactuals. AAAI 2019: 10035-10036 - [c101]Yu Chen, Telmo de Menezes e Silva Filho, Ricardo B. C. Prudêncio, Tom Diethe, Peter A. Flach:
$β^3$-IRT: A New Item Response Model and its Applications. AISTATS 2019: 1013-1021 - [c100]Hao Song, Tom Diethe, Meelis Kull, Peter A. Flach:
Distribution calibration for regression. ICML 2019: 5897-5906 - [c99]Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao Song, Peter A. Flach:
Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration. NeurIPS 2019: 12295-12305 - [i17]Yu Chen, Telmo de Menezes e Silva Filho, Ricardo B. C. Prudêncio, Tom Diethe, Peter A. Flach:
β3-IRT: A New Item Response Model and its Applications. CoRR abs/1903.04016 (2019) - [i16]Hao Song, Tom Diethe, Meelis Kull, Peter A. Flach:
Distribution Calibration for Regression. CoRR abs/1905.06023 (2019) - [i15]Tom Diethe, Meelis Kull, Niall Twomey, Kacper Sokol, Hao Song, Miquel Perelló-Nieto, Emma Tonkin, Peter A. Flach:
HyperStream: a Workflow Engine for Streaming Data. CoRR abs/1908.02858 (2019) - [i14]Kacper Sokol, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability and Transparency. CoRR abs/1909.05167 (2019) - [i13]Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodriguez, Tijl De Bie, Peter A. Flach:
FACE: Feasible and Actionable Counterfactual Explanations. CoRR abs/1909.09369 (2019) - [i12]Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao Song, Peter A. Flach:
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration. CoRR abs/1910.12656 (2019) - [i11]Kacper Sokol, Alexander Hepburn, Raúl Santos-Rodríguez, Peter A. Flach:
bLIMEy: Surrogate Prediction Explanations Beyond LIME. CoRR abs/1910.13016 (2019) - [i10]Kacper Sokol, Peter A. Flach:
Explainability Fact Sheets: A Framework for Systematic Assessment of Explainable Approaches. CoRR abs/1912.05100 (2019) - 2018
- [j42]Peter A. Flach, Myra Spiliopoulou, Serge Allegrezza, Matthias Böhmer, Burkhard Hess, Berthold Lausen:
Introduction to the special issue on Data Science in Europe. Int. J. Data Sci. Anal. 6(3): 163-165 (2018) - [j41]Niall Twomey, Tom Diethe, Xenofon Fafoutis, Atis Elsts, Ryan McConville, Peter A. Flach, Ian Craddock:
A Comprehensive Study of Activity Recognition Using Accelerometers. Informatics 5(2): 27 (2018) - [j40]Przemyslaw Woznowski, Emma Tonkin, Peter A. Flach:
Activities of Daily Living Ontology for Ubiquitous Systems: Development and Evaluation. Sensors 18(7): 2361 (2018) - [c98]Haoyan Chen, Tom Diethe, Niall Twomey, Peter A. Flach:
Anomaly detection in star light curves using hierarchical Gaussian processes. ESANN 2018 - [c97]Mike Holmes, Hao Song, Emma Tonkin, Miquel Perelló-Nieto, Sabrina Grant, Peter A. Flach:
Analysis of Patient Domestic Activity in Recovery From Hip or Knee RePlacement Surgery: Modelling Wrist-worn Wearable RSSI and Accelerometer Data in The Wild. KDH@IJCAI 2018: 13-20 - [c96]Fernando Martínez-Plumed, Bao Sheng Loe, Peter A. Flach, Seán Ó hÉigeartaigh, Karina Vold, José Hernández-Orallo:
The Facets of Artificial Intelligence: A Framework to Track the Evolution of AI. IJCAI 2018: 5180-5187 - [c95]Kacper Sokol, Peter A. Flach:
Conversational Explanations of Machine Learning Predictions Through Class-contrastive Counterfactual Statements. IJCAI 2018: 5785-5786 - [c94]Kacper Sokol, Peter A. Flach:
Glass-Box: Explaining AI Decisions With Counterfactual Statements Through Conversation With a Voice-enabled Virtual Assistant. IJCAI 2018: 5868-5870 - [c93]Tom Diethe, Mike Holmes, Meelis Kull, Miquel Perelló-Nieto, Kacper Sokol, Hao Song, Emma Tonkin, Niall Twomey, Peter A. Flach:
Releasing eHealth Analytics into the Wild: Lessons Learnt from the SPHERE Project. KDD 2018: 243-252 - [i9]Hao Song, Meelis Kull, Peter A. Flach:
Non-Parametric Calibration of Probabilistic Regression. CoRR abs/1806.07690 (2018) - 2017
- [j39]Simon Price, Peter A. Flach:
Computational support for academic peer review: a perspective from artificial intelligence. Commun. ACM 60(3): 70-79 (2017) - [j38]Niall Twomey, Tom Diethe, Ian Craddock, Peter A. Flach:
Unsupervised learning of sensor topologies for improving activity recognition in smart environments. Neurocomputing 234: 93-106 (2017) - [c92]Meelis Kull, Telmo de Menezes e Silva Filho, Peter A. Flach:
Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. AISTATS 2017: 623-631 - [c91]Kacper Sokol, Peter A. Flach:
The Role of Textualisation and Argumentation in Understanding the Machine Learning Process. IJCAI 2017: 5211-5212 - [r5]Peter A. Flach:
Classifier Calibration. Encyclopedia of Machine Learning and Data Mining 2017: 210-217 - [r4]Peter A. Flach:
First-Order Logic. Encyclopedia of Machine Learning and Data Mining 2017: 515-521 - [r3]Peter A. Flach:
ROC Analysis. Encyclopedia of Machine Learning and Data Mining 2017: 1109-1116 - [i8]Tom Diethe, Niall Twomey, Meelis Kull, Peter A. Flach, Ian Craddock:
Probabilistic Sensor Fusion for Ambient Assisted Living. CoRR abs/1702.01209 (2017) - [i7]Fernando Martínez-Plumed, Lidia Contreras Ochando, César Ferri, Peter A. Flach, José Hernández-Orallo, Meelis Kull, Nicolas Lachiche, María José Ramírez-Quintana:
CASP-DM: Context Aware Standard Process for Data Mining. CoRR abs/1709.09003 (2017) - 2016
- [j37]José Hernández-Orallo, Adolfo Martínez Usó, Ricardo B. C. Prudêncio, Meelis Kull, Peter A. Flach, Chowdhury Farhan Ahmed, Nicolas Lachiche:
Reframing in context: A systematic approach for model reuse in machine learning. AI Commun. 29(5): 551-566 (2016) - [j36]Niall Twomey, Tom Diethe, Peter A. Flach:
On the need for structure modelling in sequence prediction. Mach. Learn. 104(2-3): 291-314 (2016) - [j35]Nikolaos Nikolaou, Narayanan Unny Edakunni, Meelis Kull, Peter A. Flach, Gavin Brown:
Cost-sensitive boosting algorithms: Do we really need them? Mach. Learn. 104(2-3): 359-384 (2016) - [j34]Reem Al-Otaibi, Nanlin Jin, Tom Wilcox, Peter A. Flach:
Feature Construction and Calibration for Clustering Daily Load Curves from Smart-Meter Data. IEEE Trans. Ind. Informatics 12(2): 645-654 (2016) - [c90]Reem Al-Otaibi, Meelis Kull, Peter A. Flach:
Declaratively Capturing Local Label Correlations with Multi-Label Trees. ECAI 2016: 1467-1475 - [c89]Tom Diethe, Niall Twomey, Peter A. Flach:
Active transfer learning for activity recognition. ESANN 2016 - [c88]Miquel Perelló-Nieto, Telmo de Menezes e Silva Filho, Meelis Kull, Peter A. Flach:
Background Check: A General Technique to Build More Reliable and Versatile Classifiers. ICDM 2016: 1143-1148 - [c87]Yu Chen, Tom Diethe, Peter A. Flach:
ADL™: A Topic Model for Discovery of Activities of Daily Living in a Smart Home. IJCAI 2016: 1404-1410 - [c86]Kacper Sokol, Peter A. Flach:
Activity Recognition in Multiple Contexts for Smart-House Data. ILP (Short Papers) 2016: 66-72 - [c85]Denis Moreira dos Reis, Peter A. Flach, Stan Matwin, Gustavo E. A. P. A. Batista:
Fast Unsupervised Online Drift Detection Using Incremental Kolmogorov-Smirnov Test. KDD 2016: 1545-1554 - [c84]Tom Diethe, Niall Twomey, Peter A. Flach:
BDL.NET: Bayesian dictionary learning in Infer.NET. MLSP 2016: 1-6 - [c83]Hao Song, Meelis Kull, Peter A. Flach, Georgios Kalogridis:
Subgroup Discovery with Proper Scoring Rules. ECML/PKDD (2) 2016: 492-510 - [i6]Niall Twomey, Tom Diethe, Meelis Kull, Hao Song, Massimo Camplani, Sion L. Hannuna, Xenofon Fafoutis, Ni Zhu, Pete Woznowski, Peter A. Flach, Ian Craddock:
The SPHERE Challenge: Activity Recognition with Multimodal Sensor Data. CoRR abs/1603.00797 (2016) - 2015
- [j33]Ni Zhu, Tom Diethe, Massimo Camplani, Lili Tao, Alison Burrows, Niall Twomey, Dritan Kaleshi, Majid Mirmehdi, Peter A. Flach, Ian Craddock:
Bridging e-Health and the Internet of Things: The SPHERE Project. IEEE Intell. Syst. 30(4): 39-46 (2015) - [j32]Cèsar Ferri Ramirez, Peter A. Flach, Nicolas Lachiche:
Report of the First International Workshop on Learning over Multiple Contexts (LMCE 2014). SIGKDD Explor. 17(1): 48-50 (2015) - [c82]Chowdhury Farhan Ahmed, Md. Samiullah, Nicolas Lachiche, Meelis Kull, Peter A. Flach:
Reframing in Frequent Pattern Mining. ICTAI 2015: 799-806 - [c81]Megha Agarwal, Peter A. Flach:
Activity recognition using conditional random field. iWOAR 2015: 4:1-4:8 - [c80]Peter A. Flach, Meelis Kull:
Precision-Recall-Gain Curves: PR Analysis Done Right. NIPS 2015: 838-846 - [c79]Reem Al-Otaibi, Ricardo B. C. Prudêncio, Meelis Kull, Peter A. Flach:
Versatile Decision Trees for Learning Over Multiple Contexts. ECML/PKDD (1) 2015: 184-199 - [c78]Yu Chen, Peter A. Flach:
SVR-based Modelling for the MoReBikeS Challenge: Analysis, Visualisation and Prediction. DC@PKDD/ECML 2015 - [c77]Meelis Kull, Peter A. Flach:
Novel Decompositions of Proper Scoring Rules for Classification: Score Adjustment as Precursor to Calibration. ECML/PKDD (1) 2015: 68-85 - [c76]Tom Diethe, Niall Twomey, Peter A. Flach:
Bayesian Modelling of the Temporal Aspects of Smart Home Activity with Circular Statistics. ECML/PKDD (2) 2015: 279-294 - [c75]Hao Song, Peter A. Flach:
Model Reuse with Subgroup Discovery. DC@PKDD/ECML 2015 - 2014
- [j31]Nanlin Jin, Peter A. Flach, Tom Wilcox, Royston Sellman, Joshua Thumim, Arno J. Knobbe:
Subgroup Discovery in Smart Electricity Meter Data. IEEE Trans. Ind. Informatics 10(2): 1327-1336 (2014) - [c74]Niall Twomey, Peter A. Flach:
A Machine Learning Approach to Objective Cardiac Event Detection. CISIS 2014: 519-524 - [c73]Reem Al-Otaibi, Meelis Kull, Peter A. Flach:
LaCova: A Tree-Based Multi-label Classifier Using Label Covariance as Splitting Criterion. ICMLA 2014: 74-79 - [c72]Meelis Kull, Peter A. Flach:
Reliability Maps: A Tool to Enhance Probability Estimates and Improve Classification Accuracy. ECML/PKDD (2) 2014: 18-33 - [c71]Louise A. C. Millard, Peter A. Flach, Julian P. T. Higgins:
Rate-Constrained Ranking and the Rate-Weighted AUC. ECML/PKDD (2) 2014: 386-403 - [c70]Louise A. C. Millard, Meelis Kull, Peter A. Flach:
Rate-Oriented Point-Wise Confidence Bounds for ROC Curves. ECML/PKDD (2) 2014: 404-421 - 2013
- [j30]Tijl De Bie, Peter A. Flach:
Guest editors' introduction: special section of selected papers from ECML-PKDD 2012. Data Min. Knowl. Discov. 27(3): 442-443 (2013) - [j29]Simon Price, Peter A. Flach, Sebastian Spiegler, Christopher Bailey, Nikki Rogers:
SubSift web services and workflows for profiling and comparing scientists and their published works. Future Gener. Comput. Syst. 29(2): 569-581 (2013) - [j28]Tijl De Bie, Peter A. Flach:
Guest editors' introduction: special issue of selected papers from ECML-PKDD 2012. Mach. Learn. 92(1): 1-3 (2013) - [j27]José Hernández-Orallo, Peter A. Flach, César Ferri:
ROC curves in cost space. Mach. Learn. 93(1): 71-91 (2013) - [c69]Simon Price, Peter A. Flach:
A Higher-order data flow model for heterogeneous Big Data. IEEE BigData 2013: 569-574 - 2012
- [b2]Peter A. Flach:
Machine Learning - The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press 2012, ISBN 978-1-10-742222-3, pp. I-XVII, 1-396 - [j26]Daniel P. Berrar, Peter A. Flach:
Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). Briefings Bioinform. 13(1): 83-97 (2012) - [j25]José Hernández-Orallo, Peter A. Flach, César Ferri:
A unified view of performance metrics: translating threshold choice into expected classification loss. J. Mach. Learn. Res. 13: 2813-2869 (2012) - [j24]Stephen H. Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi Inoue, Ashwin Srinivasan:
ILP turns 20 - Biography and future challenges. Mach. Learn. 86(1): 3-23 (2012) - [e6]Peter A. Flach, Tijl De Bie, Nello Cristianini:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part I. Lecture Notes in Computer Science 7523, Springer 2012, ISBN 978-3-642-33459-7 [contents] - [e5]Peter A. Flach, Tijl De Bie, Nello Cristianini:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II. Lecture Notes in Computer Science 7524, Springer 2012, ISBN 978-3-642-33485-6 [contents] - 2011
- [j23]Peter A. Flach:
The Machine Learning journal: 25 years young. Mach. Learn. 82(3): 273-274 (2011) - [c68]José Hernández-Orallo, Peter A. Flach, Cèsar Ferri Ramirez:
Brier Curves: a New Cost-Based Visualisation of Classifier Performance. ICML 2011: 585-592 - [c67]Peter A. Flach, José Hernández-Orallo, Cèsar Ferri Ramirez:
A Coherent Interpretation of AUC as a Measure of Aggregated Classification Performance. ICML 2011: 657-664 - [c66]William Klement, Peter A. Flach, Nathalie Japkowicz, Stan Matwin:
Smooth Receiver Operating Characteristics (smROC) Curves. ECML/PKDD (2) 2011: 193-208 - [i5]José Hernández-Orallo, Peter A. Flach, Cèsar Ferri Ramirez:
Technical Note: Towards ROC Curves in Cost Space. CoRR abs/1107.5930 (2011) - [i4]Song Liu, Peter A. Flach, Nello Cristianini:
Generic Multiplicative Methods for Implementing Machine Learning Algorithms on MapReduce. CoRR abs/1111.2111 (2011) - [i3]José Hernández-Orallo, Peter A. Flach, César Ferri:
Threshold Choice Methods: the Missing Link. CoRR abs/1112.2640 (2011) - 2010
- [j22]Peter A. Flach:
The Machine Learning journal: 250 issues and counting. Mach. Learn. 81(3): 227-228 (2010) - [c65]Sebastian Spiegler, Peter A. Flach:
Enhanced Word Decomposition by Calibrating the Decision Threshold of Probabilistic Models and Using a Model Ensemble. ACL 2010: 375-383 - [c64]Sebastian Spiegler, Andrew van der Spuy, Peter A. Flach:
Ukwabelana - An open-source morphological Zulu corpus. COLING 2010: 1020-1028 - [c63]Simon Price, Peter A. Flach, Sebastian Spiegler, Christopher Bailey, Nikki Rogers:
SubSift Web Services and Workflows for Profiling and Comparing Scientists and Their Published Works. eScience 2010: 182-189 - [c62]Tarek Abudawood, Peter A. Flach:
The Advantages of Seed Examples in First-Order Multi-class Subgroup Discovery. ECAI 2010: 1113-1114 - [c61]Tarek Abudawood, Peter A. Flach:
Learning Multi-class Theories in ILP. ILP 2010: 6-13 - [c60]Tarek Abudawood, Peter A. Flach:
First-Order Multi-class Subgroup Discovery. STAIRS 2010: 1-12 - [c59]Simon Price, Peter A. Flach, Sebastian Spiegler:
SubSift: a novel application of the vector space model to support the academic research process. WAPA 2010: 20-27 - [c58]Tarek Abudawood, Peter A. Flach:
Exploiting the High Predictive Power of Multi-class Subgroups. ACML 2010: 177-192 - [r2]Peter A. Flach:
First-Order Logic. Encyclopedia of Machine Learning 2010: 410-415 - [r1]Peter A. Flach:
ROC Analysis. Encyclopedia of Machine Learning 2010: 869-875
2000 – 2009
- 2009
- [j21]Antonis C. Kakas, Peter A. Flach:
Abduction and Induction in Artificial Intelligence. J. Appl. Log. 7(3): 251 (2009) - [j20]Peter A. Flach, Sebastian Spiegler, Bruno Golénia, Simon Price, John Guiver, Ralf Herbrich, Thore Graepel, Mohammed J. Zaki:
Novel tools to streamline the conference review process: experiences from SIGKDD'09. SIGKDD Explor. 11(2): 63-67 (2009) - [j19]Kseniya B. Shalonova, Bruno Golénia, Peter A. Flach:
Towards Learning Morphology for Under-Resourced Fusional and Agglutinating Languages. IEEE Trans. Speech Audio Process. 17(5): 956-965 (2009) - [c57]William Klement, Peter A. Flach, Nathalie Japkowicz, Stan Matwin:
Cost-Based Sampling of Individual Instances. Canadian AI 2009: 86-97 - [c56]Sebastian Spiegler, Bruno Golénia, Peter A. Flach:
Unsupervised Word Decomposition with the Promodes Algorithm. CLEF (1) 2009: 625-632 - [c55]Bruno Golénia, Sebastian Spiegler, Peter A. Flach:
Unsupervised Morpheme Discovery with Ungrade. CLEF (1) 2009: 633-640 - [c54]Bruno Golénia, Sebastian Spiegler, Peter A. Flach:
UNGRADE: UNsupervised GRAph DEcomposition. CLEF (Working Notes) 2009 - [c53]Sebastian Spiegler, Bruno Golénia, Peter A. Flach:
PROMODES: A Probabilistic Generative Model for Word Decomposition. CLEF (Working Notes) 2009 - [c52]Susanne Hoche, David Hardcastle, Peter A. Flach:
Using Time Dependent Link Reduction to Improve the Efficiency of Topic Prediction in Co-Authorship Graphs. CompleNet 2009: 173-184 - [c51]Tarek Abudawood, Peter A. Flach:
Evaluation Measures for Multi-class Subgroup Discovery. ECML/PKDD (1) 2009: 35-50 - [e4]John F. Elder IV, Françoise Fogelman-Soulié, Peter A. Flach, Mohammed Javeed Zaki:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009. ACM 2009, ISBN 978-1-60558-495-9 [contents] - 2008
- [c50]Susanne Hoche, Peter A. Flach, David Hardcastle:
A Fast Method for Property Prediction in Graph-Structured Data from Positive and Unlabelled Examples. ECAI 2008: 162-166 - [c49]Simon Price, Peter A. Flach:
Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order Terms. ILP 2008: 226-243 - [c48]Sebastian Spiegler, Bruno Golénia, Ksenia Shalonova, Peter A. Flach, Roger C. F. Tucker:
Learning the morphology of Zulu with different degrees of supervision. SLT 2008: 9-12 - 2007
- [j18]Susanne Hoche, Andreas Nürnberger, Peter A. Flach:
Network analysis in natural sciences and engineering. AI Commun. 20(4): 229-230 (2007) - [c47]Shaomin Wu, Peter A. Flach, Cèsar Ferri Ramirez:
An Improved Model Selection Heuristic for AUC. ECML 2007: 478-489 - [c46]Peter A. Flach, Edson Takashi Matsubara:
A Simple Lexicographic Ranker and Probability Estimator. ECML 2007: 575-582 - [c45]Peter A. Flach:
Putting Things in Order: On the Fundamental Role of Ranking in Classification and Probability Estimation. ECML/PKDD 2007: 2-3 - [i2]Peter A. Flach, Edson Takashi Matsubara:
On classification, ranking, and probability estimation. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 - 2006
- [c44]Peter A. Flach:
Reinventing Machine Learning with ROC Analysis. IBERAMIA-SBIA 2006: 4-5 - [c43]Kerstin Eder, Peter A. Flach, Hsiou-Wen Hsueh:
Towards Automating Simulation-Based Design Verification Using ILP. ILP 2006: 154-168 - 2005
- [j17]Tom Fawcett, Peter A. Flach:
A Response to Webb and Ting's On the Application of ROC Analysis to Predict Classification Performance Under Varying Class Distributions. Mach. Learn. 58(1): 33-38 (2005) - [j16]Johannes Fürnkranz, Peter A. Flach:
ROC 'n' Rule Learning - Towards a Better Understanding of Covering Algorithms. Mach. Learn. 58(1): 39-77 (2005) - [c42]Elias Gyftodimos, Peter A. Flach:
Combining Bayesian Networks with Higher-Order Data Representations. IDA 2005: 145-156 - [c41]Peter A. Flach, Shaomin Wu:
Repairing Concavities in ROC Curves. IJCAI 2005: 702-707 - [c40]Ronaldo C. Prati, Peter A. Flach:
ROCCER: An Algorithm for Rule Learning Based on ROC Analysis. IJCAI 2005: 823-828 - [i1]Elias Gyftodimos, Peter A. Flach:
Combining Bayesian Networks with Higher-Order Data Representations. Probabilistic, Logical and Relational Learning 2005 - 2004
- [j15]Nada Lavrac, Branko Kavsek, Peter A. Flach, Ljupco Todorovski:
Subgroup Discovery with CN2-SD. J. Mach. Learn. Res. 5: 153-188 (2004) - [j14]Nada Lavrac, Bojan Cestnik, Dragan Gamberger, Peter A. Flach:
Decision Support Through Subgroup Discovery: Three Case Studies and the Lessons Learned. Mach. Learn. 57(1-2): 115-143 (2004) - [j13]Thomas Gärtner, John W. Lloyd, Peter A. Flach:
Kernels and Distances for Structured Data. Mach. Learn. 57(3): 205-232 (2004) - [j12]Peter A. Flach, Nicolas Lachiche:
Naive Bayesian Classification of Structured Data. Mach. Learn. 57(3): 233-269 (2004) - [j11]José Hernández-Orallo, César Ferri, Nicolas Lachiche, Peter A. Flach:
The 1st workshop on ROC analysis in artificial intelligence (ROCAI-2004). SIGKDD Explor. 6(2): 159-161 (2004) - [j10]Peter A. Flach:
Book review: Logic for Learning: Learning Comprehensible Theories from Structured Data by John W. Lloyd, Springer-Verlag, 2003, ISBN 3-540-42027-4. Theory Pract. Log. Program. 4(5-6): 753-755 (2004) - [c39]Johannes Fürnkranz, Peter A. Flach:
An Analysis of Stopping and Filtering Criteria for Rule Learning. ECML 2004: 123-133 - [c38]Annalisa Appice, Michelangelo Ceci, Simon Alan Rawles, Peter A. Flach:
Redundant feature elimination for multi-class problems. ICML 2004 - [c37]César Ferri, Peter A. Flach, José Hernández-Orallo:
Delegating classifiers. ICML 2004 - [c36]Elias Gyftodimos, Peter A. Flach:
Hierarchical Bayesian Networks: An Approach to Classification and Learning for Structured Data. SETN 2004: 291-300 - [e3]José Hernández-Orallo, César Ferri, Nicolas Lachiche, Peter A. Flach:
ROC Analysis in Artificial Intelligence, 1st International Workshop, ROCAI-2004, Valencia, Spain, August 22, 2004. 2004 [contents] - 2003
- [c35]Thomas Gärtner, Peter A. Flach, Stefan Wrobel:
On Graph Kernels: Hardness Results and Efficient Alternatives. COLT 2003: 129-143 - [c34]César Ferri, Peter A. Flach, José Hernández-Orallo:
Improving the AUC of Probabilistic Estimation Trees. ECML 2003: 121-132 - [c33]Peter A. Flach:
The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC Isometrics. ICML 2003: 194-201 - [c32]Johannes Fürnkranz, Peter A. Flach:
An Analysis of Rule Evaluation Metrics. ICML 2003: 202-209 - [c31]Nicolas Lachiche, Peter A. Flach:
Improving Accuracy and Cost of Two-class and Multi-class Probabilistic Classifiers Using ROC Curves. ICML 2003: 416-423 - [c30]Mark-A. Krogel, Simon Alan Rawles, Filip Zelezný, Peter A. Flach, Nada Lavrac, Stefan Wrobel:
Comparative Evaluation of Approaches to Propositionalization. ILP 2003: 197-214 - [c29]Dimitrios Mavroeidis, Peter A. Flach:
Improved Distances for Structured Data. ILP 2003: 251-268 - 2002
- [j9]Tanja Urbancic, Maja Skrjanc, Peter A. Flach:
Web-based analysis of data mining and decision support education. AI Commun. 15(4): 199-204 (2002) - [c28]Peter A. Flach, Nada Lavrac:
Learning in Clausal Logic: A Perspective on Inductive Logic Programming. Computational Logic: Logic Programming and Beyond 2002: 437-471 - [c27]Yonghong Peng, Peter A. Flach, Carlos Soares, Pavel Brazdil:
Improved Dataset Characterisation for Meta-learning. Discovery Science 2002: 141-152 - [c26]Nada Lavrac, Peter A. Flach, Branko Kavsek, Ljupco Todorovski:
Adapting classification rule induction to subgroup discovery. ICDM 2002: 266-273 - [c25]César Ferri, Peter A. Flach, José Hernández-Orallo:
Learning Decision Trees Using the Area Under the ROC Curve. ICML 2002: 139-146 - [c24]Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, Alexander J. Smola:
Multi-Instance Kernels. ICML 2002: 179-186 - [c23]Thomas Gärtner, John W. Lloyd, Peter A. Flach:
Kernels for Structured Data. ILP 2002: 66-83 - [c22]Nicolas Lachiche, Peter A. Flach:
1BC2: A True First-Order Bayesian Classifier. ILP 2002: 133-148 - [c21]Nada Lavrac, Filip Zelezný, Peter A. Flach:
RSD: Relational Subgroup Discovery through First-Order Feature Construction. ILP 2002: 149-165 - 2001
- [j8]Peter A. Flach:
On the state of the art in machine learning: A personal review. Artif. Intell. 131(1-2): 199-222 (2001) - [j7]Peter A. Flach, Nicolas Lachiche:
Confirmation-Guided Discovery of First-Order Rules with Tertius. Mach. Learn. 42(1/2): 61-95 (2001) - [j6]Peter A. Flach, Saso Dzeroski:
Editorial: Inductive Logic Programming is Coming of Age. Mach. Learn. 44(3): 207-209 (2001) - [j5]Nada Lavrac, Peter A. Flach:
An extended transformation approach to inductive logic programming. ACM Trans. Comput. Log. 2(4): 458-494 (2001) - [c20]Peter A. Flach:
Multi-relational Data Mining: a perspective. EPIA 2001: 3-4 - [c19]Thomas Gärtner, Peter A. Flach:
WBCsvm: Weighted Bayesian Classification based on Support Vector Machines. ICML 2001: 154-161 - [e2]Luc De Raedt, Peter A. Flach:
Machine Learning: EMCL 2001, 12th European Conference on Machine Learning, Freiburg, Germany, September 5-7, 2001, Proceedings. Lecture Notes in Computer Science 2167, Springer 2001, ISBN 3-540-42536-5 [contents] - 2000
- [j4]Iztok Savnik, Peter A. Flach:
Discovery of multivalued dependencies from relations. Intell. Data Anal. 4(3-4): 195-211 (2000) - [c18]Peter A. Flach, Nicolas Lachiche:
Decomposing Probability Distributions on Structured Individuals. ILP Work-in-progress reports 2000 - [c17]Ljupco Todorovski, Peter A. Flach, Nada Lavrac:
Predictive Performance of Weghted Relative Accuracy. PKDD 2000: 255-264 - [c16]Peter A. Flach:
The Use of Functional and Logic Languages in Machine Learning. WFLP 2000: 225-237
1990 – 1999
- 1999
- [j3]Peter A. Flach, Iztok Savnik:
Database Dependency Discovery: A Machine Learning Approach. AI Commun. 12(3): 139-160 (1999) - [c15]Peter A. Flach:
Knowledge Representation for Inductive Learning. ESCQARU 1999: 160-167 - [c14]Peter A. Flach, Nicolas Lachiche:
IBC: A First-Order Bayesian Classifier. ILP 1999: 92-103 - [c13]Nada Lavrac, Peter A. Flach, Blaz Zupan:
Rule Evaluation Measures: A Unifying View. ILP 1999: 174-185 - [e1]Saso Dzeroski, Peter A. Flach:
Inductive Logic Programming, 9th International Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings. Lecture Notes in Computer Science 1634, Springer 1999, ISBN 3-540-66109-3 [contents] - 1998
- [j2]Peter A. Flach, Antonis C. Kakas, Ruy J. G. B. de Queiroz, Kátia Silva Guimaraes:
Conference Report: Abduction and Induction in AI; Logic, Proofs and Algorithms; Logic in Natural Language; Logic for Concurrency and Synchronisation (LOCUS). Log. J. IGPL 6(4): 651-663 (1998) - [c12]Peter A. Flach:
From Extensional to Intensional Knowledge: Inductive Logic Programming Techniques and Their Application to Deductive Databases. Transactions and Change in Logic Databases 1998: 356-387 - [c11]Peter A. Flach, Christophe G. Giraud-Carrier, John W. Lloyd:
Strongly Typed Inductive Concept Learning. ILP 1998: 185-194 - [c10]Peter A. Flach:
Comparing Consequence Relations. KR 1998: 180-189 - 1997
- [j1]Peter A. Flach, Antonis C. Kakas:
Abductive and Inductive Reasoning: Report of the ECAI'96 Workshop. Log. J. IGPL 5(5): 773-778 (1997) - [c9]Peter A. Flach:
Inductive Logic Databases: From Extensional to Intensional Knowledge. DOOD 1997: 3 - [c8]Peter A. Flach:
Normal Forms for Inductive Logic Programming. ILP 1997: 149-156 - 1996
- [c7]Peter A. Flach:
Rationality Postulates for Induction. TARK 1996: 267-281 - 1994
- [b1]Peter A. Flach:
Simply logical - intelligent reasoning by example. Wiley professional computing, Wiley 1994, ISBN 978-0-471-94152-1, pp. I-XV, 1-240 - 1993
- [c6]Peter A. Flach:
Predicate Invention in Inductive Data Engineering. ECML 1993: 83-94 - 1992
- [c5]Peter A. Flach:
An Analysis of Various Forms of "Jumping to Conclusions". AII 1992: 170-186 - [c4]Peter A. Flach:
A Model of Inductive Reasoning. Logic at Work 1992: 41-56 - 1991
- [c3]Shan-Hwei Nienhuys-Cheng, Peter A. Flach:
Consistent Term Mappings, Term Partitions and Inverse Resolution. EWSL 1991: 361-374 - [c2]Peter A. Flach:
Towards a Theory of Inductive Logic Programming. ISMIS 1991: 510-519
1980 – 1989
- 1989
- [c1]Peter A. Flach:
Second-order Inductive Learning. AII 1989: 202-216
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 20:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint