default search action
The Mathematics of Paul Erdős II, 2013
- Ronald L. Graham, Jaroslav Nesetril, Steve Butler:
The Mathematics of Paul Erdős II. Springer 2013, ISBN 978-1-4614-7253-7 - Martin Aigner, Eberhard Triesch:
Reconstruction Problems for Digraphs. 5-13 - Noga Alon:
Neighborly Families of Boxes and Bipartite Coverings. 15-20 - Donald Beaver, Stuart Haber, Peter Winkler:
On the Isolation of a Common Secret. 21-38 - Sergei L. Bezrukov, Konrad Engel:
Properties of Graded Posets Preserved by Some Operations. 39-46 - Béla Bollobás, Graham R. Brightwell:
The Dimension of Random Graph Orders. 47-68 - Béla Bollobás, Andrew Thomason:
Hereditary and Monotone Properties of Graphs. 69-80 - Stephan Brandt:
Cycles and Paths in Triangle-Free Graphs. 81-93 - Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp:
Problems in Graph Theory from Memphis. 95-118 - Herbert Fleischner, Michael Stiebitz:
Some Remarks on the Cycle Plus Triangles Problem. 119-125 - Zoltán Füredi:
Intersection Representations of the Complete Bipartite Graph. 127-134 - András Gyárfás:
Reflections on a Problem of Erdős and Hajnal. 135-141 - Hong Wang, Norbert Sauer:
The Chromatic Number of the Two-Packing of a Forest. 143-166 - Ronald L. Graham, Jaroslav Nesetril:
Ramsey Theory in the Work of Paul Erdős. 171-193 - Gyula O. H. Katona:
Memories on Shadows and Shadows of Memories. 195-198 - Alexandr V. Kostochka:
A Bound of the Cardinality of Families Not Containing \(\Delta \) -Systems. 199-206 - Alexander A. Razborov:
Flag Algebras: An Interim Report. 207-232 - Vojtech Rödl, Robin Thomas:
Arrangeability and Clique Subdivisions. 233-236 - Saharon Shelah:
A Finite Partition Theorem with Double Exponential Bound. 237-244 - Miklós Simonovits:
Paul Erdős' Influence on Extremal Graph Theory. 245-311 - William T. Trotter:
Applications of the Probabilistic Method to Partially Ordered Sets. 313-329 - Ron Aharoni:
A Few Remarks on a Conjecture of Erdős on the Infinite Version of Menger's Theorem. 335-352 - Peter J. Cameron:
The Random Graph. 353-378 - András Hajnal:
Paul Erdős' Set Theory. 379-418 - Péter Komjáth:
Set Theory: Geometric and Real. 419-425 - Igor Kríz:
On Order-Perfect Lattices. 427-439 - Saharan Shelah:
The PCF Theorem Revisited. 441-488 - Jerrold W. Grossman:
Paul Erdős: The Master of Collaboration. 489-496
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.