default search action
4th StarAI@AAAI 2014: Québec City, QC, Canada
- Statistical Relational Artificial Intelligence, Papers from the 2014 AAAI Workshop, Québec City, Québec, Canada, July 27, 2014. AAAI Technical Report WS-14-13, AAAI 2014
- Sriraam Natarajan:
Organizers. - Guy Van den Broeck, Kristian Kersting, Sriraam Natarajan, David Poole:
Preface. - Udi Apsel, Kristian Kersting, Martin Mladenov:
Lifting Relational MAP-LPs using Cluster Signatures. - Islam Beltagy, Raymond J. Mooney:
Efficient Markov Logic Inference for Natural Language Semantics. - Ismail Ilkan Ceylan, Rafael Peñaloza:
Reasoning in the Description Logic BEL Using Bayesian Networks. - Jaesik Choi, Eyal Amir, Tianfang Xu, Albert J. Valocchi:
Parameter Estimation for Relational Kalman Filtering. - Matthew C. Dirks, Andrew Csinger, Andrew Bamber, David Poole:
Representation, Reasoning, and Learning for a Relational Influence Diagram Applied to a Real-Time Geological Domain. - Golnoosh Farnadi, Stephen H. Bach, Marie-Francine Moens, Lise Getoor, Martine De Cock:
Extending PSL with Fuzzy Quantifiers. - Eric Gribkoff, Guy Van den Broeck, Dan Suciu:
Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting. - Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam Natarajan, David Poole:
Relational Logistic Regression: The Directed Analog of Markov Logic Networks. - Tushar Khot, Sriraam Natarajan, Jude W. Shavlik:
Classification from One Class of Examples for Relational Domains. - Junkyu Lee, Radu Marinescu, Rina Dechter:
Applying Marginal MAP Search to Probabilistic Conformant Planning: Initial Results. - Daniel Lowd, Brenton Lessley, Mino De Raj:
Towards Adversarial Reasoning in Statistical Relational Domains. - Aniruddh Nath, Pedro M. Domingos:
Automated Debugging with Tractable Probabilistic Programming. - Aniruddh Nath, Pedro M. Domingos:
Learning Tractable Statistical Relational Models. - Mathias Niepert, Pedro M. Domingos:
Tractable Probabilistic Knowledge Bases: Wikipedia and Beyond. - Masaaki Nishino, Akihiro Yamamoto, Masaaki Nagata:
A Sparse Parameter Learning Method for Probabilistic Logic Programs. - Shrutika Poyrekar, Sriraam Natarajan, Kristian Kersting:
A Deeper Empirical Analysis of CBP Algorithm: Grounding Is the Bottleneck. - Joris Renkens, Angelika Kimmig, Guy Van den Broeck, Luc De Raedt:
Explanation-Based Approximate Weighted Model Counting for Probabilistic Logics. - Fatemeh Riahi, Oliver Schulte, Qing Li:
A Proposal for Statistical Outlier Detection in Relational Structures. - Sebastian Riedel, Sameer Singh, Vivek Srikumar, Tim Rocktäschel, Larysa Visengeriyeva, Jan Noessner:
WOLFE: Strength Reduction and Approximate Programming for Probabilistic Programming. - Brian E. Ruttenberg, Matthew P. Wilkins, Avi Pfeffer:
Hierarchical Reasoning with Probabilistic Programming. - Zhengya Sun, Zhuoyu Wei, Jue Wang, Hongwei Hao:
Scalable Learning for Structure in Markov Logic Networks. - Deepak Venugopal, Vibhav Gogate:
Evidence-Based Clustering for Scalable Inference in Markov Logic. - Mihaela Verman, Philip Stutz, Abraham Bernstein:
Solving Distributed Constraint Optimization Problems Using Ranks. - Jonas Vlasselaer, Wannes Meert, Guy Van den Broeck, Luc De Raedt:
Efficient Probabilistic Inference for Dynamic Relational Models. - William Yang Wang, Kathryn Mazaitis, William W. Cohen:
ProPPR: Efficient First-Order Probabilistic Logic Programming for Structure Discovery, Parameter Learning, and Scalable Inference.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.