default search action
31st ESANN 2023: Bruges, Belgium
- 31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2023, Bruges, Belgium, October 4-6, 2023. 2023
Graph Representation Learning
- Davide Bacciu, Federico Errica, Alessio Micheli, Nicolò Navarin, Luca Pasa, Marco Podda, Daniele Zambon:
Graph Representation Learning. - Domenico Tortorella, Alessio Micheli:
Richness of Node Embeddings in Graph Echo State Networks. - Luis H. M. Torres, Bernardete Ribeiro, Joel Arrais:
Convolutional Transformer via Graph Embeddings for Few-shot Toxicity and Side Effect Prediction. - Federico Errica, Alessio Gravina, Davide Bacciu, Alessio Micheli:
Hidden Markov Models for Temporal Graph Representation Learning. - Francesco Landolfi, Davide Bacciu, Danilo Numeroso:
A Tropical View of Graph Neural Networks. - Weiwei Wang, Stefano Bromuri, Michel Dumontier:
Graph-based Categorical Embedding. - Thanh Vu, Huy Ngo, Bac Le, Thanh Le:
FouriER: Link Prediction by Mixing Tokens with Fourier-enhanced MetaFormer.
Feature selection and dimension reduction
- Fabian Hinder, Barbara Hammer:
Feature Selection for Concept Drift Detection. - Michael Biehl, Sofie Lövdal:
Improved Interpretation of Feature Relevances: Iterated Relevance Matrix Analysis (IRMA). - Maximilian Münch, Katrin Sophie Bohnsack, Alexander Engelsberger, Frank-Michael Schleif, Thomas Villmann:
Sparse Nyström Approximation for Non-Vectorial Data Using Class-informed Landmark Selection. - Felipe Contreras, Kerstin Bunte, Reynier Peletier:
Improved the locally aligned ant technique (LAAT) strategy to recover manifolds embedded in strong noise. - Pierre Lambert, John A. Lee, Edouard Couplet, Cyril de Bodt:
Nesterov momentum and gradient normalization to improve t-SNE convergence and neighborhood preservation, without early exaggeration. - Fabian Fumagalli, Maximilian Muschalik, Eyke Hüllermeier, Barbara Hammer:
On Feature Removal for Explainability in Dynamic Environments. - Valerie Vaquet, Johannes Brinkrolf, Barbara Hammer:
Robust Feature Selection and Robust Training to Cope with Hyperspectral Sensor Shifts. - Benoît Frénay:
A Counterexample to Ockham's Razor and the Curse of Dimensionality: Marginalising Complexity and Dimensionality for GMMs. - Joakim Linja, Joonas Hämäläinen, Tommi Kärkkäinen:
Feature Selection for Multi-label Classification with Minimal Learning Machine. - Daniel Nowak Assis:
Learning with Boosting Decision Stumps for Feature Selection in Evolving Data Streams.
Towards Machine Learning Models that We Can Trust: Testing, Improving, and Explaining Robustness
- Maura Pintor, Ambra Demontis, Battista Biggio:
Towards Machine Learning Models that We Can Trust: Testing, Improving, and Explaining Robustness. - Mohit Kumar, Bernhard Moser, Lukas Fischer:
Secure Federated Learning with Kernel Affine Hull Machines. - Giorgio Piras, Giuseppe Floris, Raffaele Mura, Luca Scionis, Maura Pintor, Battista Biggio, Ambra Demontis:
Improving Fast Minimum-Norm Attacks with Hyperparameter Optimization. - David Pape, Sina Däubener, Thorsten Eisenhofer, Antonio Emanuele Cinà, Lea Schönherr:
On the Limitations of Model Stealing with Uncertainty Quantification Models. - Luca Oneto, Sandro Ridella, Davide Anguita:
Towards Randomized Algorithms and Models that We Can Trust: a Theoretical Perspective. - Ana Maria Barragán-Montero, Robin Tilman, Margerie Huet-Dastarac, John A. Lee:
Single-pass uncertainty estimation with layer ensembling for regression: application to proton therapy dose prediction for head and neck cancer.
Fairness and Interpretability, Clustering, and NLP
- Kylliann De Santiago, Marie Szafranski, Christophe Ambroise:
Mixture of stochastic block models for multiview clustering. - Jérémie Bogaert, Emmanuel Jean, Cyril de Bodt, François-Xavier Standaert:
Fine-tuning is not (always) overfitting artifacts. - Paul Moggridge, Na Helian, Yi Sun, Mariana Lilley:
On Instance Weighted Clustering Ensembles. - Zhengxiang Shi, Aldo Lipani:
Rethink the Effectiveness of Text Data Augmentation: An Empirical Analysis. - Sédrick Stassin, Otmane Amel, Sidi Ahmed Mahmoudi, Xavier Siebert:
Similarity versus Supervision: Best Approaches for HS Code Prediction. - Otmane Amel, Sédrick Stassin, Sidi Ahmed Mahmoudi, Xavier Siebert:
Multimodal Approach for Harmonized System Code Prediction. - Danilo Franco, Luca Oneto, Davide Anguita:
Mitigating Robustness Bias: Theoretical Results and Empirical Evidences. - Denis Martins, Christian Lülf, Fabian Gieseke:
End-to-End Neural Network Training for Hyperbox-Based Classification. - Kodjo Mawuena Amekoe, Mohamed Djallel Dilmi, Hanene Azzag, Zaineb Chelly Dagdia, Mustapha Lebbah, Gregoire Jaffre:
TabSRA: An Attention based Self-Explainable Model for Tabular Learning. - Andrea Ceni, Davide Bacciu, Valerio De Caro, Claudio Gallicchio, Luca Oneto:
Improving Fairness via Intrinsic Plasticity in Echo State Networks. - Martin Bogdan:
Is Boredom an Indicator on the way to Singularity of Artificial Intelligence? Hypotheses as Thought-Provoking Impulse. - Karan Bhanot, Dennis Wei, Ioana Baldini, Kristin P. Bennett:
Adversarial Auditing of Machine Learning Models under Compound Shift. - Xi Chen, Giacomo Anerdi, Daniel Stanley Tan, Stefano Bromuri:
Language Modeling in Logistics: Customer Calling Prediction. - Indro Spinelli, Michele Guerra, Filippo Maria Bianchi, Simone Scardapane:
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability.
Quantum Artificial Intelligence
- José D. Martín-Guerrero, Lucas Lamata, Thomas Villmann:
Quantum Artificial Intelligence: A tutorial. - Alessandro Poggiali, Anna Bernasconi, Alessandro Berti, Gianna M. Del Corso, Riccardo Guidotti:
Quantum Feature Selection with Variance Estimation. - Alessandro Berti:
Logarithmic Quantum Forking. - Alexander Engelsberger, Thomas Villmann:
Quantum-ready vector quantization: Prototype learning as a binary optimization problem. - M. Lautaro Hickmann, Arne P. Raulf, Frank Köster, Friedhelm Schwenker, Hans-Martin Rieser:
Potential analysis of a Quantum RL controller in the context of autonomous driving.
Green Machine Learning
- Verónica Bolón-Canedo, Laura Morán-Fernández, Brais Cancela, Amparo Alonso-Betanzos:
Green Machine Learning. - Samuel Suárez-Marcote, Laura Morán-Fernández, Verónica Bolón-Canedo:
Logarithmic division for green feature selection: an information-theoretic approach. - Guillermo Castillo García, Laura Morán-Fernández, Verónica Bolón-Canedo:
Efficient feature selection for domain adaptation using Mutual Information Maximization. - Afonso Lourenço, Carolina Ferraz, Jorge Meira, Goreti Marreiros, Verónica Bolón-Canedo, Amparo Alonso-Betanzos:
Automated green machine learning for condition-based maintenance. - Mariya Shumska, Kerstin Bunte:
Multispectral Texture Classification in Agriculture.
Reinforcement learning and Evolutionary computation
- André Correia, Luís A. Alexandre:
DEFENDER: DTW-Based Episode Filtering Using Demonstrations for Enhancing RL Safety. - Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
Automatic Trade-off Adaptation in Offline RL. - Oliver Kramer:
Enhancing Evolution Strategies with Evolution Path Bias. - Sami Khairy, Prasanna Balaprakash:
Multi-Fidelity Reinforcement Learning with Control Variates. - Guilherme Souza, Priscila Lima, Felipe M. G. França:
Sun Tracking using a Weightless Q-Learning Neural Network. - Brieuc Pinon, Raphaël M. Jungers, Jean-Charles Delvenne:
A model-based approach to meta-Reinforcement Learning: Transformers and tree search. - Gautier Laisné, Nasser Rezzoug, Jean Marc Salotti:
Derivative-Free Optimization Approaches for Force Polytopes Prediction. - Mali Imre Gergely, Gabriela Czibula:
Policy-Based Reinforcement Learning in the Generalized Rock-Paper-Scissors Game.
Classification
- Karol Struniawski, Aleksandra Konopka, Ryszard Kozera:
Performance Evaluation of Activation Functions in Extreme Learning Machine. - Eduardo Mosqueira-Rey, David Vázquez-Lema, Elena Hernández-Pereira:
Evaluating Curriculum Learning Strategies for Pancreatic Cancer Prediction. - Gianluca Coda, Massimo De Gregorio, Antonio Sorgente, Paolo Vanacore:
Improving the DRASiW performance by exploiting its own "Mental Images". - Otávio Oliveira Napoli, Ana Maria de Almeida, José Miguel Sales Dias, Luís Brás Rosário, Edson Borin, Maurício Breternitz Jr.:
Efficient Knowledge Aggregation Methods for Weightless Neural Networks. - Mehrdad Mohannazadeh Bakhtiari, Daniel Staps, Thomas Villmann:
Learning Vector Quantization in Context of Information Bottleneck Theory. - Luis Sanchez, Erzsébet Merényi, Christopher D. Tunnell:
SOM-based Classification and a Novel Stopping Criterion for Astroparticle Applications. - Leopoldo Lusquino Filho, Felipe M. G. França, Priscila Lima:
WiSARD-based Ensemble Learning.
Deep learning and Computer vision
- Matteo Pardi, Domenico Tortorella, Alessio Micheli:
Entropy Based Regularization Improves Performance in the Forward-Forward Algorithm. - Edouard Couplet, Pierre Lambert, Michel Verleysen, John A. Lee, Cyril de Bodt:
On the number of latent representations in deep neural networks for tabular data. - Zhengyang Yu, Jochen Triesch:
CRE: Circle relationship embedding of patches in vision transformer. - Andreas Papachristodoulou, Christos Kyrkou, Stelios Timotheou, Theocharis Theocharides:
Introducing Convolutional Channel-wise Goodness in Forward-Forward Learning. - Hazan Daglayan, Simon Vary, Pierre-Antoine Absil:
An Alternating Minimization Algorithm with Trajectory for Direct Exoplanet Detection. - Mohammed Aldosari, John A. Miller:
On Transformer Autoregressive Decoding for Multivariate Time Series Forecasting. - Nermeen Abou Baker, Uwe Handmann:
Don't waste SAM. - Frederieke Richert, Michiel Straat, Elisa Oostwal, Michael Biehl:
Layered Neural Networks with GELU Activation, a Statistical Mechanics Analysis. - Leonardo Amato, Marta Maschietto, Alessandro Leparulo, Mattia Tambaro, Stefano Vassanelli, Alessandro Sperduti:
Real-time Detection of Evoked Potentials by Deep Learning: a Case Study. - Estelle M. Massart, Vinayak Abrol:
Coordinate descent on the Stiefel manifold for deep neural network training. - Yichun Li, Yuxing Yang, Rajesh Nair, Syed Mohsen Naqvi:
Action-Based ADHD Diagnosis in Video. - Samuele Fonio, Lorenzo Paletto, Mattia Cerrato, Dino Ienco, Roberto Esposito:
Hierarchical priors for Hyperspherical Prototypical Networks. - Helen Schneider, David Biesner, Akash Ashokan, Maximilian Broß, Rebecca Kador, Sandra Halscheidt, Gabor Bagyo, Peter Dankerl, Haissam Ragab, Jin Yamamura, Christoph Labisch, Rafet Sifa:
Segmentation and Analysis of Lumbar Spine MRI Scans for Vertebral Body Measurements. - Henda Boudegga, Yaroub Elloumi, Asma Ben Abdallah, Rostom Kachouri, Mouhamed Hédi Bedoui:
Retinal blood vessel segmentation from high resolution fundus image using deep learning architecture. - Quoc-Huy Trinh, Hieu Nguyen, Van Nguyen, Xuan-Mao Nguyen, Hai-Dang Nguyen:
Graph for Transformer Feature: A New Approach for Face Anti-Spoofing. - Alexandra-Ioana Albu:
Temporal Ensembling-based Deep k-Nearest Neighbours for Learning with Noisy Labels. - Leandro H. de S. Silva, Agostinho A. F. Júnior, Bruno J. T. Fernandes, George O. de A. Azevedo, Sergio C. Oliveira:
Evaluation of Contrastive Learning for Electronic Component Detection.
Sequential data, and Meta-learning
- Tanguy Bosser, Souhaib Ben Taieb:
Revisiting the Mark Conditional Independence Assumption in Neural Marked Temporal Point Processes. - Andrea Cossu, Francesco Spinnato, Riccardo Guidotti, Davide Bacciu:
A Protocol for Continual Explanation of SHAP. - Claudio Gallicchio, Andrea Ceni:
Residual Reservoir Computing Neural Networks for Time-series Classification. - Tameem Adel:
Probabilistic Adaptation for Meta-Learning. - Fatoumata Dama, Christine Sinoquet, Corinne Lejus-Bourdeau:
A hidden Markov model with Hawkes process-derived contextual variables to improve time series prediction. Case study in medical simulation. - Giulia Marchello, Marco Corneli, Charles Bouveyron:
Deep dynamic co-clustering of streams of count data: a new online Zip-dLBM. - Valerio De Caro, Antonio Di Mauro, Davide Bacciu, Claudio Gallicchio:
Communication-Efficient Ridge Regression in Federated Echo State Networks. - Antoine Hubermont, Elio Tuci, Nicola De Quattro:
Simultaneous failures classification in a predictive maintenance case. - Alberto Meola, Sören Weinrich:
Hybrid modelling of dynamic anaerobic digestion process in full-scale with LSTM NN and BMP measurements. - Oliver Kramer, Jill Baumann:
Wind Power Prediction with ETSformer. - Romain Egele, Isabelle Guyon, Yixuan Sun, Prasanna Balaprakash:
Is One Epoch All You Need For Multi-Fidelity Hyperparameter Optimization?
Machine Learning Applied to Sign Language
- Jérôme Fink, Mathieu De Coster, Joni Dambre, Benoît Frénay:
Trends and Challenges for Sign Language Recognition with Machine Learning. - Fabrizio Nunnari, Annette Rios, Uwe D. Reichel, Chirag Bhuvaneshwara, Panagiotis Paraskevas Filntisis, Petros Maragos, Felix Burkhardt, Florian Eyben, Björn W. Schuller, Sarah Ebling:
Multimodal Recognition of Valence, Arousal and Dominance via Late-Fusion of Text, Audio and Facial Expressions. - Lee Kezar, Tejas Srinivasan, Riley Carlin, Jesse Thomason, Zed Sevcikova Sehyr, Naomi Caselli:
Exploring Strategies for Modeling Sign Language Phonology. - Javier Martinez Rodriguez, Martha A. Larson, Louis ten Bosch:
Exploring the Importance of Sign Language Phonology for a Deep Neural Network. - Alvaro Leandro Cavalcante Carneiro, Denis Henrique Pinheiro Salvadeo, Lucas de Brito Silva:
Large-scale dataset and benchmarking for hand and face detection focused on sign language. - Dinh Nam Pham, Vera Czehmann, Eleftherios Avramidis:
Disambiguating Signs: Deep Learning-based Gloss-level Classification for German Sign Language by Utilizing Mouth Actions.
Efficient Learning in Spiking Neural Networks
- Alex Rast, Mario Antoine Aoun, Eleni Elia, Nigel T. Crook:
Efficient Learning in Spiking Models. - Naresh Balaji Ravichandran, Anders Lansner, Pawel Andrzej Herman:
Spiking neural networks with Hebbian plasticity for unsupervised representation learning. - Nigel T. Crook, Alex Rast, Eleni Elia, Mario Antoine Aoun:
Functional Resonant Synaptic Clusters for Decoding Time-Structured Spike Trains. - Nicola Russo, Yuzhong Wan, Thomas Madsen, Konstantin Nikolic:
Pattern Recognition Spiking Neural Network for Classification of Chinese Characters. - Louis Le Coeur, Nick Riedman, Saarthak Sarup, Kwabena Boahen:
Energy-efficient detection of a spike sequence.
Anomaly Detection, and Learning Algorithms
- Sukanya Patra, Le Thi Khanh Hien, Souhaib Ben Taieb:
Anomaly detection in irregular image sequences for concentrated solar power plants. - Adrian Alan Pol, Ekaterina Govorkova, Sonja Grönroos, Nadezda Chernyavskaya, Philip C. Harris, Maurizio Pierini, Isobel Ojalvo, Peter Elmer:
Knowledge Distillation for Anomaly Detection. - Fjola Hyseni, Nicolas P. Rougier, Arthur Leblois:
Comparative study of the synfire chain and ring attractor model for timing in the premotor nucleus in male Zebra Finches. - Anne-Sophie Collin, Cyril de Bodt, Dounia Mulders, Christophe De Vleeschouwer:
Don't skip the skips: autoencoder skip connections improve latent representation discrepancy for anomaly detection. - Thomas Villmann, Ronny Schubert, Marika Kaden:
Variants of Neural Gas for Regression Learning. - Jungeun Yoon, Dasong Yu, Youngjae Lee:
Hybrid Deep Learning-Based Air and Water Quality Prediction Model. - Sophie Adama, Martin Bogdan:
Sleep analysis in a CLIS patient using soft-clustering: a case study. - Armielle Noulapeu Ngaffo, Julien Albert, Benoît Frénay, Gilles Perrouin:
FairBayRank: A Fair Personalized Bayesian Ranker. - Felix Weiske, Jens Jäkel:
Robust and Cheap Safety Measure for Exoskeletal Learning Control with Estimated Uniform PAC (EUPAC).
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.