default search action
WMT@HLT-NAACL 2006: New York City, NY, USA
- Philipp Koehn, Christof Monz:
Proceedings on the Workshop on Statistical Machine Translation, WMT@HLT-NAACL 2006, New York City, NY, USA, June 8-9, 2006. Association for Computational Linguistics 2006 - Maja Popovic, Adrià de Gispert, Deepa Gupta, Patrik Lambert, Hermann Ney, José B. Mariño, Marcello Federico, Rafael E. Banchs:
Morpho-syntactic Information for Automatic Error Analysis of Statistical Machine Translation Output. 1-6 - Ilknur Durgar El-Kahlout, Kemal Oflazer:
Initial Explorations in English to Turkish Statistical Machine Translation. 7-14 - Anas El Isbihani, Shahram Khadivi, Oliver Bender, Hermann Ney:
Morpho-syntactic Arabic Preprocessing for Arabic to English Statistical Machine Translation. 15-22 - David A. Smith, Jason Eisner:
Quasi-Synchronous Grammars: Alignment by Soft Projection of Syntactic Dependencies. 23-30 - John DeNero, Dan Gillick, James Zhang, Dan Klein:
Why Generative Phrase Models Underperform Surface Heuristics. 31-38 - Philippe Langlais, Fabrizio Gotti:
Phrase-Based SMT with Shallow Tree-Phrases. 39-46 - Luis Rodríguez, Ismael García-Varea, José A. Gámez:
Searching for alignments in SMT. A novel approach based on an Estimation of Distribution Algorithm. 47-54 - Richard Zens, Hermann Ney:
Discriminative Reordering Models for Statistical Machine Translation. 55-63 - Daniel Ortiz-Martínez, Ismael García-Varea, Francisco Casacuberta:
Generalized Stack Decoding Algorithms for Statistical Machine Translation. 64-71 - Richard Zens, Hermann Ney:
N-Gram Posterior Probabilities for Statistical Machine Translation. 72-77 - Jia Xu, Richard Zens, Hermann Ney:
Partitioning Parallel Documents Using Binary Segmentation. 78-85 - Karolina Owczarzak, Declan Groves, Josef van Genabith, Andy Way:
Contextual Bitext-Derived Paraphrases in Automatic MT Evaluation. 86-93 - Marcello Federico, Nicola Bertoldi:
How Many Bits Are Needed To Store Probabilities for Phrase-Based Translation? 94-101 - Philipp Koehn, Christof Monz:
Manual and Automatic Evaluation of Machine Translation between European Languages. 102-121 - Taro Watanabe, Hajime Tsukada, Hideki Isozaki:
NTT System Description for the WMT2006 Shared Task. 122-125 - Alexandre Patry, Fabrizio Gotti, Philippe Langlais:
Mood at work: Ramses versus Pharaoh. 126-129 - Joan-Andreu Sánchez, José-Miguel Benedí:
Stochastic Inversion Transduction Grammars for Obtaining Word Phrases for Phrase-based Statistical Machine Translation. 130-133 - Howard Johnson, Fatiha Sadat, George F. Foster, Roland Kuhn, Michel Simard, Eric Joanis, Samuel Larkin:
PORTAGE: with Smoothed Phrase Tables and Segment Choice Models. 134-137 - Andreas Zollmann, Ashish Venugopal:
Syntax Augmented Machine Translation via Chart Parsing. 138-141 - Marta R. Costa-jussà, Josep Maria Crego, Adrià de Gispert, Patrik Lambert, Maxim Khalilov, José B. Mariño, José A. R. Fonollosa, Rafael E. Banchs:
TALP Phrase-based statistical translation system for European language pairs. 142-145 - Marian Olteanu, Chris Davis, Ionut Volosen, Dan I. Moldovan:
Phramer - An Open Source Statistical Phrase-Based Translator. 146-149 - Marian Olteanu, Pasin Suriyentrakorn, Dan I. Moldovan:
Language Models and Reranking for Machine Translation. 150-153 - Alexandra Birch, Chris Callison-Burch, Miles Osborne, Philipp Koehn:
Constraining the Phrase-Based, Joint Probability Statistical Translation Model. 154-157 - Arul Menezes, Kristina Toutanova, Chris Quirk:
Microsoft Research Treelet Translation System: NAACL 2006 Europarl Evaluation. 158-161 - Josep Maria Crego, Adrià de Gispert, Patrik Lambert, Marta R. Costa-jussà, Maxim Khalilov, Rafael E. Banchs, José B. Mariño, José A. R. Fonollosa:
N-gram-based SMT System Enhanced with Reordering Patterns. 162-165 - Jesús Giménez, Lluís Màrquez:
The LDV-COMBO system for SMT. 166-169
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.