default search action
IEEE Micro, Volume 42
Volume 42, Number 1, January - February 2022
- Lizy Kurian John:
Smart Agriculture and Smart Memories. 4-6 - Sudip Misra, Neeraj Kumar:
Special Issue on Artificial Intelligence, Edge, and Internet of Things for Smart Agriculture. 6-7 - Debjani Ghosh, Akash Anand, Satya Sankalp Gautam, Ankit Vidyarthi:
Soil Fertility Monitoring With Internet of Underground Things: A Survey. 8-16 - Faisal Karim Shaikh, Mohsin Ali Memon, Naeem Ahmed Mahoto, Sherali Zeadally, Jamel Nebhen:
Artificial Intelligence Best Practices in Smart Agriculture. 17-24 - Wei-Che Chien, Mohammad Mehedi Hassan, Ahmed Alsanad, Giancarlo Fortino:
UAV-Assisted Joint Wireless Power Transfer and Data Collection Mechanism for Sustainable Precision Agriculture in 5G. 25-32 - Prabhat Kumar, Govind P. Gupta, Rakesh Tripathi:
PEFL: Deep Privacy-Encoding-Based Federated Learning Framework for Smart Agriculture. 33-40 - Muhammad Adil, Muhammad Khurram Khan, Mona Jamjoom, Ahmed Farouk:
MHADBOR: AI-Enabled Administrative-Distance-Based Opportunistic Load Balancing Scheme for an Agriculture Internet of Things Network. 41-50 - Kaneez Fizza, Prem Prakash Jayaraman, Abhik Banerjee, Dimitrios Georgakopoulos, Rajiv Ranjan:
Evaluating Sensor Data Quality in Internet of Things Smart Agriculture Applications. 51-60 - Xu Liu, Steven W. Chen, Guilherme V. Nardari, Chao Qu, Fernando Cladera Ojeda, Camillo J. Taylor, Vijay Kumar:
Challenges and Opportunities for Autonomous Micro-UAVs in Precision Agriculture. 61-68 - Ranveer Chandra, Manohar Swaminathan, Tusher Chakraborty, Jian Ding, Zerina Kapetanovic, Peeyush Kumar, Deepak Vasisht:
Democratizing Data-Driven Agriculture Using Affordable Hardware. 69-77 - Andrew D. Balmos, Fabio A. Castiblanco, Aaron J. Neustedter, James V. Krogmeier, Dennis R. Buckmaster:
ISOBlue Avena: A Framework for Agricultural Edge Computing and Data Sovereignty. 78-86 - Reetuparna Das:
Special Issue on In-Memory Computing. 87-88 - Jian Meng, Wonbo Shim, Li Yang, Injune Yeo, Deliang Fan, Shimeng Yu, Jae-sun Seo:
Temperature-Resilient RRAM-Based In-Memory Computing for DNN Inference. 89-98 - Juhyoung Lee, Jihoon Kim, Wooyoung Jo, Sangyeob Kim, Sangjin Kim, Hoi-Jun Yoo:
ECIM: Exponent Computing in Memory for an Energy-Efficient Heterogeneous Floating-Point DNN Training Processor. 99-107 - Marzieh Lenjani, Kevin Skadron:
Supporting Moderate Data Dependency, Position Dependency, and Divergence in PIM-Based Accelerators. 108-115 - Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shinhaeng Kang, Sukhan Lee, Songyi Han, YeonGon Cho, Jin Hyun Kim, Yongsuk Kwon, KyungSoo Kim, Jin Jung, IlKwon Yun, Sung Joo Park, Hyunsun Park, Joon-Ho Song, Jeonghyeon Cho, Kyomin Sohn, Nam Sung Kim, Hsien-Hsin S. Lee:
Near-Memory Processing in Action: Accelerating Personalized Recommendation With AxDIMM. 116-127 - Joshua J. Yi:
Analysis of Historical Patenting Behavior and Patent Characteristics of Computer Architecture Companies - Part II: Prosecution Time and Effective Patent Term Length. 128-136 - Shane Greenstein:
Google and Apple Signed a Deal. 138-140
Volume 42, Number 2, March - April 2022
- Lizy Kurian John:
Special Issue on Cool Chips and Hot Interconnects. 4-5 - Makoto Ikeda, Fumio Arakawa:
Special Issue on Cool Chips. 6-7 - Zhenshan Bao, Guohang Fu, Wenbo Zhang, Kang Zhan, Junnan Guo:
LSFQ: A Low-Bit Full Integer Quantization for High-Performance FPGA-Based CNN Acceleration. 8-15 - Donghyeon Han, Dongseok Im, Gwangtae Park, Youngwoo Kim, Seokchan Song, Juhyoung Lee, Hoi-Jun Yoo:
A Mobile DNN Training Processor With Automatic Bit Precision Search and Fine-Grained Sparsity Exploitation. 16-25 - Mitsuhisa Sato, Yuetsu Kodama, Miwako Tsuji, Tesuya Odajima:
Co-Design and System for the Supercomputer "Fugaku". 26-34 - Sayan Ghosh, Ryan E. Grant, Min Si:
Special Issue on Hot Interconnects. 35-36 - Debendra Das Sharma:
A Low-Latency and Low-Power Approach for Coherency and Memory Protocols on PCI Express 6.0 PHY at 64.0 GT/s With PAM-4 Signaling. 37-43 - Kartik Lakhotia, Fabrizio Petrini, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Allreduce With In-Network Reduction on Intel PIUMA. 44-52 - Arpan Jain, Nawras Alnaasan, Aamir Shafi, Hari Subramoni, Dhabaleswar K. Panda:
Optimizing Distributed DNN Training Using CPUs and BlueField-2 DPUs. 53-60 - Cristóbal Camarero, Carmen Martínez, Ramón Beivide:
Polarized Routing for Large Interconnection Networks. 61-67 - Yiltan Hassan Temuçin, Amir Hossein Sojoodi, Pedram Alizadeh, Benjamin Kitor, Ahmad Afsahi:
Accelerating Deep Learning Using Interconnect-Aware UCX Communication for MPI Collectives. 68-76 - Joshua J. Yi:
Review of Patents Issued to Computer Architecture Companies in 2021 [Micro Law]. 77-84 - Shane Greenstein:
Time for a Change in U.S. Antitrust for Technology? 86-88
Volume 42, Number 3, May - June 2022
- Lizy Kurian John:
Hot Chips 33 and More! 4-5 - Alisa Scherer, Guri Sohi:
Special Issue on Hot Chips 33. 6 - Mark Evers, Leslie Barnes, Mike Clark:
The AMD Next-Generation "Zen 3" Core. 7-12 - Efraim Rotem, Adi Yoaz, Lihu Rappoport, Stephen J. Robinson, Julius Yuli Mandelblat, Arik Gihon, Eliezer Weissmann, Rajshree Chabukswar, Vadim Basin, Russell Fenger, Monica Gupta, Ahmad Yasin:
Intel Alder Lake CPU Architectures. 13-19 - Jin Hyun Kim, Shinhaeng Kang, Sukhan Lee, Hyeonsu Kim, Yuhwan Ro, Seungwon Lee, David Wang, Jihyun Choi, Jinin So, YeonGon Cho, Joon-Ho Song, Jeonghyeon Cho, Kyomin Sohn, Nam Sung Kim:
Aquabolt-XL HBM2-PIM, LPDDR5-PIM With In-Memory Processing, and AXDIMM With Acceleration Buffer. 20-30 - Amlan Ganguly, Sergi Abadal, Ishan G. Thakkar, Natalie Enright Jerger, Marc D. Riedel, Masoud Babaie, Rajeev Balasubramonian, Abu Sebastian, Sudeep Pasricha, Baris Taskin:
Interconnects for DNA, Quantum, In-Memory, and Optical Computing: Insights From a Panel Discussion. 40-49 - German Maglione Mathey, Jesús Escudero-Sahuquillo, Pedro Javier García, Francisco J. Quiles:
Reducing the Impact of Interjob Interference in Dragonfly Networks Using Virtual Partitions. 50-56 - Fahrettin Koc, Behzad Salami, Oguz Ergin, Osman S. Unsal, Adrián Cristal Kestelman:
Can We Trust Undervolting in FPGA-Based Deep Learning Designs at Harsh Conditions? 57-65 - Joshua J. Yi:
Review of Patents Issued to Computer Architecture Companies in 2021 - Part II. 67-77 - Michael Mattioli:
Meet the FaM1ly. 78-84 - Shane Greenstein:
Growth From Breadth and Depth. 86-88 - David R. Ditzel:
Accelerating ML Recommendation With Over 1, 000 RISC-V/Tensor Processors on Esperanto's ET-SoC-1 Chip. 31-38
Volume 42, Number 4, July - August 2022
- Lizy Kurian John:
Top Picks from 2021 Computer Architecture Conferences! 4-5 - Sudhanva Gurumurthi, Radu Teodorescu:
Special Issue on Top Picks From the 2021 Computer Architecture Conferences. 6-9 - Pulkit A. Misra, Ioannis Manousakis, Esha Choukse, Majid Jalili, Iñigo Goiri, Ashish Raniwala, Brijesh Warrier, Husam Alissa, Bharath Ramakrishnan, Phillip Tuma, Christian Belady, Marcus Fontoura, Ricardo Bianchini:
Overclocking in Immersion-Cooled Datacenters. 10-17 - Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman, Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela:
Warehouse-Scale Video Acceleration. 18-26 - Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou:
Practical and Scalable ML-Driven Cloud Performance Debugging With Sage. 27-36 - Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon Wei, David Brooks, Carole-Jean Wu:
Chasing Carbon: The Elusive Environmental Footprint of Computing. 37-47 - Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srinivas Devadas, Ronald G. Dreslinski, Chris Peikert, Daniel Sánchez:
An Architecture to Accelerate Computation on Encrypted Data. 59-68 - Michael B. Sullivan, Nirmal R. Saxena, Mike O'Connor, Donghyuk Lee, Paul Racunas, Saurabh Hukerikar, Timothy Tsai, Siva Kumar Sastry Hari, Stephen W. Keckler:
Characterizing and Mitigating Soft Errors in GPU DRAM. 69-77 - Vasileios Tsoutsouras, Orestis Kaparounakis, Chatura Samarakoon, Bilgesu Arif Bilgin, James Timothy Meech, Jan Heck, Phillip Stanley-Marbell:
The Laplace Microarchitecture for Tracking Data Uncertainty. 78-86 - Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee, Fang Lu, Yihan Pang, Joseph Ravichandran, Finn Sinclair, Boyuan Tian, Hengzhi Yuan, Jeffrey Zhang, Sarita V. Adve:
ILLIXR: An Open Testbed to Enable Extended Reality Systems Research. 97-106 - Apostolos Kokolis, Antonis Psistakis, Benjamin Reidys, Jian Huang, Josep Torrellas:
Distributed Data Persistency. 107-115 - Ajeya Naithani, Sam Ainsworth, Timothy M. Jones, Lieven Eeckhout:
Vector Runahead for Indirect Memory Accesses. 116-123 - Joshua J. Yi:
Analysis of Historical Patenting Behavior and Patent Characteristics of Computer Architecture Companies - Part III: Claims. 124-132 - Shane Greenstein:
Inflation and Technology Markets. 134-136
Volume 42, Number 5, September - October 2022
- Lizy Kurian John:
Automatic Compilation Will Be Key for Success of the Accelerator Revolution! 4-5 - Guido Araujo, Lucas Wanner:
Special Issue on Compiling for Accelerators. 6-8 - Hsin-I Cindy Liu, Marius Brehler, Mahesh Ravishankar, Nicolas Vasilache, Ben Vanik, Stella Laurenzo:
TinyIREE: An ML Execution Environment for Embedded Systems From Compilation to Deployment. 9-16 - Thien Nguyen, Alexander J. McCaskey:
Retargetable Optimizing Compilers for Quantum Accelerators via a Multilevel Intermediate Representation. 17-33 - João P. L. de Carvalho, José E. Moreira, José Nelson Amaral:
Compiling for the IBM Matrix Engine for Enterprise Workloads. 34-40 - Neil Adit, Adrian Sampson:
Performance Left on the Table: An Evaluation of Compiler Autovectorization for RISC-V. 41-48 - Nuno Neves, Joao Mario Domingos, Nuno Roma, Pedro Tomás, Gabriel Falcão:
Compiling for Vector Extensions With Stream-Based Specialization. 49-58 - Jian Weng, Sihao Liu, Dylan Kupsh, Tony Nowatzki:
Unifying Spatial Accelerator Compilation With Idiomatic and Modular Transformations. 59-69 - Joon Kyung Kim, Byung Hoon Ahn, Sean Kinzer, Soroush Ghodrati, Rohan Mahapatra, Brahmendra Reddy Yatham, Shu-Ting Wang, Dohee Kim, Parisa Sarikhani, Babak Mahmoudi, Divya Mahajan, Jongse Park, Hadi Esmaeilzadeh:
Yin-Yang: Programming Abstractions for Cross-Domain Multi-Acceleration. 89-98 - Jean-Michel Gorius, Simon Rokicki, Steven Derrien:
SpecHLS: Speculative Accelerator Design Using High-Level Synthesis. 99-107 - Adel Ejjeh, Aaron Councilman, Akash Kothari, Maria Kotsifakou, Leon Medvinsky, Abdul Rafae Noor, Hashim Sharif, Yifan Zhao, Sarita V. Adve, Sasa Misailovic, Vikram S. Adve:
HPVM: Hardware-Agnostic Programming for Heterogeneous Parallel Systems. 108-117 - Joshua J. Yi:
Analysis of Historical Patenting Behavior and Patent Characteristics of Computer Architecture Companies - Part IV: Claims. 119-127 - Shane Greenstein:
Archetypes of Risky Decisions. 130-132 - Kevin Angstadt, Tommy Tracy II, Kevin Skadron, Jean-Baptiste Jeannin, Westley Weimer:
Synthesizing Legacy String Code for FPGAs Using Bounded Automata Learning. 70-77 - Nicolas Bohm Agostini, Serena Curzel, Jeff Jun Zhang, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana, Joseph B. Manzano, David Brooks, Gu-Yeon Wei, Antonino Tumeo:
Bridging Python to Silicon: The SODA Toolchain. 78-88
Volume 42, Number 6, November - December 2022
- Lizy Kurian John:
Artificial Intelligence at the Edge: Designs and Architectures for Pervasive Intelligence. 4-5 - Gabriel Falcão, Joseph R. Cavallaro:
Special Issue on Artificial Intelligence at the Edge. 6-8 - Sébastien Ollivier, Xinyi Zhang, Yue Tang, Chayanika Choudhuri, Jingtong Hu, Alex K. Jones:
Pod-racing: bulk-bitwise to floating-point compute in racetrack memory for machine learning at the edge. 9-16 - Cecilia De la Parra, Taha Soliman, Andre Guntoro, Akash Kumar, Norbert Wehn:
Increasing Throughput of In-Memory DNN Accelerators by Flexible Layerwise DNN Approximation. 17-24 - Geraldo F. Oliveira, Juan Gómez-Luna, Saugata Ghose, Amirali Boroumand, Onur Mutlu:
Accelerating Neural Network Inference With Processing-in-DRAM: From the Edge to the Cloud. 25-38 - Mahadev Satyanarayanan, Ziqiang Feng, Shilpa Anna George, Jan Harkes, Roger Iyengar, Haithem Turki, Padmanabhan Pillai:
Accelerating Silent Witness Storage. 39-47 - Flavio Ponzina, Simone Machetti, Marco Rios, Benoît Walter Denkinger, Alexandre Levisse, Giovanni Ansaloni, Miguel Peón Quirós, David Atienza:
A Hardware/Software Co-Design Vision for Deep Learning at the Edge. 48-54 - José L. Núñez-Yáñez:
Fused Architecture for Dense and Sparse Matrix Processing in TensorFlow Lite. 55-66 - Esteban Garzón, Adam Teman, Marco Lanuzza, Leonid Yavits:
AIDA: Associative In-Memory Deep Learning Accelerator. 67-75 - Chuteng Zhou, Fernando García-Redondo, Julian Büchel, Irem Boybat, Xavier Timoneda Comas, S. R. Nandakumar, Shidhartha Das, Abu Sebastian, Manuel Le Gallo, Paul N. Whatmough:
ML-HW Co-Design of Noise-Robust TinyML Models and Always-On Analog Compute-in-Memory Edge Accelerator. 76-87 - Ali Safa, Jonah Van Assche, Mark Daniel Alea, Francky Catthoor, Georges G. E. Gielen:
Neuromorphic Near-Sensor Computing: From Event-Based Sensing to Edge Learning. 88-95 - Hassan Nahas, Sean Huver, Billy Y. S. Yiu, Chris M. Kallweit, Adrian J. Y. Chee, Alfred C. H. Yu:
Artificial-Intelligence-Enhanced Ultrasound Flow Imaging at the Edge. 96-106 - Aidin Shiri, Mozhgan Navardi, Tejaswini Manjunath, Nicholas R. Waytowich, Tinoosh Mohsenin:
Efficient Language-Guided Reinforcement Learning for Resource-Constrained Autonomous Systems. 107-114 - Lita Yang, Robert M. Radway, Yu-Hsin Chen, Tony F. Wu, Huichu Liu, Elnaz Ansari, Vikas Chandra, Subhasish Mitra, Edith Beigné:
Three-Dimensional Stacked Neural Network Accelerator Architectures for AR/VR Applications. 116-124 - Felix Jentzsch, Yaman Umuroglu, Alessandro Pappalardo, Michaela Blott, Marco Platzner:
RadioML Meets FINN: Enabling Future RF Applications With FPGA Streaming Architectures. 125-133 - Joshua J. Yi:
Analysis of Historical Patenting Behavior and Patent Characteristics of Computer Architecture Companies - Part V: References. 135-140 - Shane Greenstein:
Distributed Discretion by the Slice. 142-144
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.