default search action
Neurocomputing, Volume 192
Volume 192, June 2016
- Fabio Aiolli, Kerstin Bunte, Romain Hérault, Mikhail F. Kanevski:
Special issue: Advances in artificial neural networks, machine learning and computational intelligenceSelected papers from the 23rd European Symposium on Artificial Neural Networks (ESANN 2015). 1-2
- Benjamin Paaßen, Bassam Mokbel, Barbara Hammer:
Adaptive structure metrics for automated feedback provision in intelligent tutoring systems. 3-13 - Mehrnoosh Vahdat, Luca Oneto, Davide Anguita, Mathias Funk, Matthias Rauterberg:
Can machine learning explain human learning? 14-28
- Jens Schreiter, Duy Nguyen-Tuong, Marc Toussaint:
Efficient sparsification for Gaussian process regression. 29-37 - Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, Fabrice Rossi:
Mean Absolute Percentage Error for regression models. 38-48
- Robert Lieck, Marc Toussaint:
Temporally extended features in model-based reinforcement learning with partial observability. 49-60
- Jakramate Bootkrajang:
A generalised label noise model for classification in the presence of annotation errors. 61-71 - Guifang Zhou, Wen Huang, Kyle A. Gallivan, Paul Van Dooren, Pierre-Antoine Absil:
A Riemannian rank-adaptive method for low-rank optimization. 72-80
- Marco Corneli, Pierre Latouche, Fabrice Rossi:
Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks. 81-91 - Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
Ordered Decompositional DAG kernels enhancements. 92-103
- Andrea Bohnsack, Kristin Domaschke, Marika Kaden, Mandy Lange, Thomas Villmann:
Learning matrix quantization and relevance learning based on Schatten-p-norms. 104-114 - Massimo De Gregorio, Maurizio Giordano:
Cloning DRASiW systems via memory transfer. 115-127
- Sebastian Otte, Martin V. Butz, Danil Koryakin, Fabian Becker, Marcus Liwicki, Andreas Zell:
Optimizing recurrent reservoirs with neuro-evolution. 128-138 - Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Lars Polsterer:
Model-coupled autoencoder for time series visualisation. 139-146
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.