default search action
Pattern Recognition Letters, Volume 96
Volume 96, September 2017
- Alfredo Petrosino, Lucia Maddalena, Thierry Bouwmans:
Editorial-Scene background modeling and initialization. 1-2 - Thierry Bouwmans, Lucia Maddalena, Alfredo Petrosino:
Scene background initialization: A taxonomy. 3-11 - Benjamin Laugraud, Sébastien Piérard, Marc Van Droogenbroeck:
LaBGen: A method based on motion detection for generating the background of a scene. 12-21 - Andrews Sobral, El-hadi Zahzah:
Matrix and tensor completion algorithms for background model initialization: A comparative evaluation. 22-33 - Graciela María de Jesús Ramírez Alonso, Juan A. Ramirez-Quintana, Mario Ignacio Chacon Murguia:
Temporal weighted learning model for background estimation with an automatic re-initialization stage and adaptive parameters update. 34-44 - Domenico Daniele Bloisi, Andrea Pennisi, Luca Iocchi:
Parallel multi-modal background modeling. 45-54 - Massimo De Gregorio, Maurizio Giordano:
Background estimation by weightless neural networks. 55-65 - Yi Wang, Zhiming Luo, Pierre-Marc Jodoin:
Interactive deep learning method for segmenting moving objects. 66-75 - Gabriel Moyà Alcover, Ahmed Elgammal, Antoni Jaume-i-Capó, Javier Varona:
Modeling depth for nonparametric foreground segmentation using RGBD devices. 76-85 - Tsubasa Minematsu, Hideaki Uchiyama, Atsushi Shimada, Hajime Nagahara, Rin-Ichiro Taniguchi:
Adaptive background model registration for moving cameras. 86-95 - Danilo Avola, Luigi Cinque, Gian Luca Foresti, Cristiano Massaroni, Daniele Pannone:
A keypoint-based method for background modeling and foreground detection using a PTZ camera. 96-105 - Yi Wang, Sébastien Piérard, Song-Zhi Su, Pierre-Marc Jodoin:
Improving pedestrian detection using motion-guided filtering. 106-112
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.