default search action
José Carlos Ortiz-Bayliss
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j28]Maria Torcoroma Benavides-Robles, Gerardo Humberto Valencia-Rivera, Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss:
Robotic Mobile Fulfillment System: A Systematic Review. IEEE Access 12: 16767-16782 (2024) - [j27]Gabriel Gonzalez-Sahagun, Santiago Enrique Conant-Pablos, José Carlos Ortiz-Bayliss, Jorge M. Cruz-Duarte:
A Generalist Reinforcement Learning Agent for Compressing Convolutional Neural Networks. IEEE Access 12: 51100-51114 (2024) - [j26]Alonso Javier Amado-Garfias, Santiago Enrique Conant-Pablos, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
Improving Armed People Detection on Video Surveillance Through Heuristics and Machine Learning Models. IEEE Access 12: 111818-111831 (2024) - [j25]Gabriel Gonzalez-Sahagun, Santiago Enrique Conant-Pablos, José Carlos Ortiz-Bayliss, Jorge M. Cruz-Duarte:
A Generalist Reinforcement Learning Agent for Compressing Multiple Convolutional Networks Using Singular Value Decomposition. IEEE Access 12: 136131-136147 (2024) - [j24]Alonso Javier Amado-Garfias, Santiago Enrique Conant-Pablos, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
Automatic Selection of Machine Learning Models for Armed People Identification. IEEE Access 12: 175952-175968 (2024) - [j23]Gerardo Humberto Valencia-Rivera, Maria Torcoroma Benavides-Robles, Alonso Vela Morales, Iván Amaya, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Juan Gabriel Aviña-Cervantes:
A systematic review of metaheuristic algorithms in electric power systems optimization. Appl. Soft Comput. 150: 111047 (2024) - [j22]Jose M. Tapia-Avitia, Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Nelishia Pillay:
Analysing hyper-heuristics based on Neural Networks for the automatic design of population-based metaheuristics in continuous optimisation problems. Swarm Evol. Comput. 89: 101616 (2024) - [c52]Guillermo Pérez-Espinosa, Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Nelishia Pillay:
Tailoring Metaheuristics for Designing Thermodynamic-Optimal Cooling Devices for Microelectronic Thermal Management Applications. CEC 2024: 1-8 - [c51]Daniel F. Zambrano-Gutierrez, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Iván Amaya, Juan Gabriel Aviña-Cervantes:
Beyond Traditional Tuning: Unveiling Metaheuristic Operator Trends in PID Control Tuning for Automatic Voltage Regulation. CEC 2024: 1-8 - [c50]José Carlos Ortiz-Bayliss, Anna Karen Gárate-Escamilla, Hugo Terashima-Marín:
Missing Data and Their Effect on Algorithm Selection for the Bin Packing Problem. MCPR 2024: 34-43 - [c49]José Eduardo Zárate-Aranda, José Carlos Ortiz-Bayliss:
An Exploratory Study on Machine-Learning-Based Hyper-heuristics for the Knapsack Problem. MCPR 2024: 119-128 - [c48]José Eduardo Zárate-Aranda, José Carlos Ortiz-Bayliss:
Exploring Classificational Cellular Automaton Hyper-heuristics for Solving the Knapsack Problem. MICAI (2) 2024: 57-69 - 2023
- [j21]Daniel F. Zambrano-Gutierrez, Jorge Mario Cruz-Duarte, Juan Gabriel Aviña-Cervantes, José Carlos Ortiz-Bayliss, Jesus J. Yanez-Borjas, Iván Amaya:
Automatic Design of Metaheuristics for Practical Engineering Applications. IEEE Access 11: 7262-7276 (2023) - [c47]Gerardo Humberto Valencia-Rivera, José Carlos Ortiz-Bayliss, Jorge M. Cruz-Duarte, Iván Amaya, Juan Gabriel Aviña-Cervantes:
Hyper-Heuristics Meet Controller Design: Improving Electrical Grid Performance through Microgrids. CEC 2023: 1-8 - [c46]Alonso Vela, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Iván Amaya:
Recursive Hyper-Heuristics for the Job Shop Scheduling Problem. CEC 2023: 1-8 - [c45]Maria Torcoroma Benavides-Robles, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Iván Amaya:
On the Feasibility of Using a High-Level Solver within Robotic Mobile Fulfillment Systems. SSCI 2023: 1274-1279 - [c44]Daniel F. Zambrano-Gutierrez, Alberto C. Molina-Porras, Emmanuel Ovalle-Magallanes, Iván Amaya, José Carlos Ortiz-Bayliss, Juan Gabriel Aviña-Cervantes, Jorge M. Cruz-Duarte:
SIGNRL: A Population-Based Reinforcement Learning Method for Continuous Control. SSCI 2023: 1443-1448 - 2022
- [j20]Alonso Vela, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Iván Amaya:
Beyond Hyper-Heuristics: A Squared Hyper-Heuristic Model for Solving Job Shop Scheduling Problems. IEEE Access 10: 43981-44007 (2022) - [j19]Kevin B. Kwan-Loo, José Carlos Ortiz-Bayliss, Santiago E. Conant-Pablos, Hugo Terashima-Marín, Peyman Najafirad:
Detection of Violent Behavior Using Neural Networks and Pose Estimation. IEEE Access 10: 86339-86352 (2022) - [j18]Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Iván Amaya:
MatHH: A Matlab-based Hyper-Heuristic framework. SoftwareX 18: 101047 (2022) - [c43]Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Nelishia Pillay:
A Transfer Learning Hyper-heuristic Approach for Automatic Tailoring of Unfolded Population-based Metaheuristics. CEC 2022: 1-8 - [c42]Jose M. Tapia-Avitia, Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Nelishia Pillay:
A Primary Study on Hyper-Heuristics Powered by Artificial Neural Networks for Customising Population-based Metaheuristics in Continuous Optimisation Problems. CEC 2022: 1-8 - [i5]Roberto García-Torres, Alitzel Adriana Macias-Infante, Santiago Enrique Conant-Pablos, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
Combining Constructive and Perturbative Deep Learning Algorithms for the Capacitated Vehicle Routing Problem. CoRR abs/2211.13922 (2022) - 2021
- [j17]Alonso Vela, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Iván Amaya:
Tailoring Job Shop Scheduling Problem Instances Through Unified Particle Swarm Optimization. IEEE Access 9: 66891-66914 (2021) - [j16]Melissa Sánchez, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Iván Amaya:
Sequence-Based Selection Hyper-Heuristic Model via MAP-Elites. IEEE Access 9: 116500-116527 (2021) - [j15]Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Rodrigo Correa:
Solving microelectronic thermal management problems using a generalized spiral optimization algorithm. Appl. Intell. 51(8): 5622-5643 (2021) - [j14]Frumen Olivas, Iván Amaya, José Carlos Ortiz-Bayliss, Santiago E. Conant-Pablos, Hugo Terashima-Marín:
Enhancing Hyperheuristics for the Knapsack Problem through Fuzzy Logic. Comput. Intell. Neurosci. 2021: 8834324:1-8834324:17 (2021) - [j13]Guillermo A. Martínez-Mascorro, José R. Abreu-Pederzini, José Carlos Ortiz-Bayliss, Angel Garcia-Collantes, Hugo Terashima-Marín:
Criminal Intention Detection at Early Stages of Shoplifting Cases by Using 3D Convolutional Neural Networks. Comput. 9(2): 24 (2021) - [j12]Felipe de la Rosa-Rivera, José I. Nuñez-Varela, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
Algorithm selection for solving educational timetabling problems. Expert Syst. Appl. 174: 114694 (2021) - [j11]Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Santiago E. Conant-Pablos, Hugo Terashima-Marín, Yong Shi:
Hyper-Heuristics to customise metaheuristics for continuous optimisation. Swarm Evol. Comput. 66: 100935 (2021) - [c41]Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Nelishia Pillay:
Automated Design of Unfolded Metaheuristics and the Effect of Population Size. CEC 2021: 1155-1162 - [c40]Jesús Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
A Straightforward Framework for Video Retrieval Using CLIP. MCPR 2021: 3-12 - [c39]Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Nelishia Pillay:
Naïve Hyper-heuristic Online Learning to Generate Unfolded Population-based Metaheuristics to Solve Continuous Optimization Problems. SSCI 2021: 1-8 - [i4]Jesús Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
A Straightforward Framework For Video Retrieval Using CLIP. CoRR abs/2102.12443 (2021) - 2020
- [j10]Melissa Sánchez, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss, Hector G. Ceballos, Hugo Terashima-Marín, Iván Amaya:
A Systematic Review of Hyper-Heuristics on Combinatorial Optimization Problems. IEEE Access 8: 128068-128095 (2020) - [j9]Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Yong Shi:
CUSTOMHyS: Customising Optimisation Metaheuristics via Hyper-heuristic Search. SoftwareX 12: 100628 (2020) - [c38]Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Santiago Enrique Conant-Pablos, Hugo Terashima-Marín:
A Primary Study on Hyper-Heuristics to Customise Metaheuristics for Continuous optimisation. CEC 2020: 1-8 - [c37]Fernando Garza-Santisteban, Iván Amaya, Jorge Cruz, José Carlos Ortiz-Bayliss, Ender Özcan, Hugo Terashima-Marín:
Exploring Problem State Transformations to Enhance Hyper-heuristics for the Job-Shop Scheduling Problem. CEC 2020: 1-8 - [c36]Frumen Olivas, Iván Amaya, José Carlos Ortiz-Bayliss, Santiago E. Conant-Pablos, Hugo Terashima-Marín:
A Fuzzy Hyper-Heuristic Approach for the 0-1 Knapsack Problem. CEC 2020: 1-8 - [c35]Xavier Sánchez, José Carlos Ortiz-Bayliss, Iván Amaya, Jorge M. Cruz-Duarte, Santiago Enrique Conant-Pablos, Hugo Terashima-Marín:
A Preliminary Study on Feature-independent Hyper-heuristics for the 0/1 Knapsack Problem. CEC 2020: 1-8 - [c34]Arturo Silva-Gálvez, Erick Lara-Cárdenas, Iván Amaya, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss:
A Preliminary Study on Score-Based Hyper-heuristics for Solving the Bin Packing Problem. MCPR 2020: 318-327 - [c33]Erick Lara-Cárdenas, Xavier Sánchez-Díaz, Iván Amaya, Jorge M. Cruz-Duarte, José Carlos Ortiz-Bayliss:
A Genetic Programming Framework for Heuristic Generation for the Job-Shop Scheduling Problem. MICAI (1) 2020: 284-295 - [c32]Arturo Silva-Gálvez, Jorge Orozco-Sanchez, Erick Lara-Cárdenas, José Carlos Ortiz-Bayliss, Iván Amaya, Jorge M. Cruz-Duarte, Hugo Terashima-Marín:
Discovering Action Regions for Solving the Bin Packing Problem through Hyper-heuristics. SSCI 2020: 822-828 - [c31]Erick Lara-Cárdenas, Arturo Silva-Gálvez, José Carlos Ortiz-Bayliss, Iván Amaya, Jorge M. Cruz-Duarte, Hugo Terashima-Marín:
Exploring Reward-based Hyper-heuristics for the Job-shop Scheduling Problem. SSCI 2020: 3133-3140 - [i3]Guillermo A. Martínez-Mascorro, José R. Abreu-Pederzini, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
Suspicious Behavior Detection on Shoplifting Cases for Crime Prevention by Using 3D Convolutional Neural Networks. CoRR abs/2005.02142 (2020) - [i2]Guillermo A. Martínez-Mascorro, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
Detecting Suspicious Behavior: How to Deal with Visual Similarity through Neural Networks. CoRR abs/2007.15235 (2020)
2010 – 2019
- 2019
- [j8]Andrés Eduardo Gutiérrez-Rodríguez, Santiago E. Conant-Pablos, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín:
Selecting meta-heuristics for solving vehicle routing problems with time windows via meta-learning. Expert Syst. Appl. 118: 470-481 (2019) - [j7]Luis Fernando Plata-González, Iván Amaya, José Carlos Ortiz-Bayliss, Santiago Enrique Conant-Pablos, Hugo Terashima-Marín, Carlos A. Coello Coello:
Evolutionary-based tailoring of synthetic instances for the Knapsack problem. Soft Comput. 23(23): 12711-12728 (2019) - [c30]Fernando Garza-Santisteban, Roberto Sánchez-Pámanes, Luis Antonio Puente Rodríguez, Iván Amaya, José Carlos Ortiz-Bayliss, Santiago E. Conant-Pablos, Hugo Terashima-Marín:
A Simulated Annealing Hyper-heuristic for Job Shop Scheduling Problems. CEC 2019: 57-64 - [c29]Iván Amaya, José Carlos Ortiz-Bayliss, Santiago E. Conant-Pablos, Hugo Terashima-Marín:
Hyper-heuristics Reversed: Learning to Combine Solvers by Evolving Instances. CEC 2019: 1790-1797 - [c28]Erick Lara-Cárdenas, Xavier Sánchez-Díaz, Iván Amaya, José Carlos Ortiz-Bayliss:
Improving Hyper-heuristic Performance for Job Shop Scheduling Problems Using Neural Networks. MICAI 2019: 150-161 - [c27]Fernando Garza-Santisteban, Jorge M. Cruz-Duarte, Iván Amaya, José Carlos Ortiz-Bayliss, Santiago Enrique Conant-Pablos, Hugo Terashima-Marín:
Influence of Instance Size on Selection Hyper-Heuristics for Job Shop Scheduling Problems. SSCI 2019: 1708-1715 - 2018
- [j6]Iván Amaya, José Carlos Ortiz-Bayliss, Alejandro Rosales-Pérez, Andrés Eduardo Gutiérrez-Rodríguez, Santiago E. Conant-Pablos, Hugo Terashima-Marín, Carlos A. Coello Coello:
Enhancing Selection Hyper-Heuristics via Feature Transformations. IEEE Comput. Intell. Mag. 13(2): 30-41 (2018) - [j5]José Carlos Ortiz-Bayliss, Iván Amaya, Santiago Enrique Conant-Pablos, Hugo Terashima-Marín:
Exploring the Impact of Early Decisions in Variable Ordering for Constraint Satisfaction Problems. Comput. Intell. Neurosci. 2018: 6103726:1-6103726:14 (2018) - [c26]Bronson Duhart, Fernando Camarena, José Carlos Ortiz-Bayliss, Iván Amaya, Hugo Terashima-Marín:
An Experimental Study on Ant Colony Optimization Hyper-Heuristics for Solving the Knapsack Problem. MCPR 2018: 62-71 - [c25]Iván Amaya, José Carlos Ortiz-Bayliss, Santiago Enrique Conant-Pablos, Hugo Terashima-Marín, Carlos A. Coello Coello:
Tailoring Instances of the 1D Bin Packing Problem for Assessing Strengths and Weaknesses of Its Solvers. PPSN (2) 2018: 373-384 - [i1]Iván Amaya, José Carlos Ortiz-Bayliss, Alejandro Rosales-Pérez, Andrés Eduardo Gutiérrez-Rodríguez, Santiago E. Conant-Pablos, Hugo Terashima-Marín, Carlos A. Coello Coello:
Enhancing Selection Hyper-heuristics via Feature Transformations. CoRR abs/1812.05070 (2018) - 2017
- [c24]Iván Amaya, José Carlos Ortiz-Bayliss, Andrés Eduardo Gutiérrez-Rodríguez, Hugo Terashima-Marín, Carlos A. Coello Coello:
Improving hyper-heuristic performance through feature transformation. CEC 2017: 2614-2621 - [c23]Alejandro Rosales-Pérez, Andrés Eduardo Gutiérrez-Rodríguez, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Carlos A. Coello Coello:
Evolutionary multilabel hyper-heuristic design. CEC 2017: 2622-2629 - [c22]Andrés Eduardo Gutiérrez-Rodríguez, José Carlos Ortiz-Bayliss, Alejandro Rosales-Pérez, Ivan M. Amaya-Contreras, Santiago E. Conant-Pablos, Hugo Terashima-Marín, Carlos A. Coello Coello:
Applying automatic heuristic-filtering to improve hyper-heuristic performance. CEC 2017: 2638-2644 - [c21]Fernando Gómez-Herrera, Rodolfo A. Ramirez-Valenzuela, José Carlos Ortiz-Bayliss, Iván Amaya, Hugo Terashima-Marín:
A Quartile-Based Hyper-heuristic for Solving the 0/1 Knapsack Problem. MICAI (1) 2017: 118-128 - 2016
- [j4]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
Combine and conquer: an evolutionary hyper-heuristic approach for solving constraint satisfaction problems. Artif. Intell. Rev. 46(3): 327-349 (2016) - [j3]Jorge Humberto Moreno-Scott, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems. Comput. Intell. Neurosci. 2016: 7349070:1-7349070:15 (2016) - [j2]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
A Neuro-evolutionary Hyper-heuristic Approach for Constraint Satisfaction Problems. Cogn. Comput. 8(3): 429-441 (2016) - [c20]Alejandro Sosa-Ascencio, Hugo Terashima-Marín, José Carlos Ortiz-Bayliss, Santiago E. Conant-Pablos:
Grammar-based Selection Hyper-heuristics for Solving Irregular Bin Packing Problems. GECCO (Companion) 2016: 111-112 - [c19]David Espinoza-Nevárez, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Gustavo Gatica:
Selection and Generation Hyper-heuristics for Solving the Vehicle Routing Problem with Time Windows. GECCO (Companion) 2016: 139-140 - 2015
- [c18]José Carlos Ortiz-Bayliss, Dulce Jaqueline Magaña-Lozano, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
A Recursive Split, Solve, and Join Strategy for Solving Constraint Satisfaction Problems. MICAI (Special Sessions) 2015: 73-79 - [c17]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
Lifelong Learning Selection Hyper-heuristics for Constraint Satisfaction Problems. MICAI (1) 2015: 190-201 - 2013
- [j1]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
Learning vector quantization for variable ordering in constraint satisfaction problems. Pattern Recognit. Lett. 34(4): 423-432 (2013) - [c16]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago E. Conant-Pablos:
Using learning classifier systems to design selective hyper-heuristics for constraint satisfaction problems. IEEE Congress on Evolutionary Computation 2013: 2618-2625 - [c15]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Ender Ozcan, Andrew J. Parkes, Santiago E. Conant-Pablos:
Exploring heuristic interactions in constraint satisfaction problems: A closer look at the hyper-heuristic space. IEEE Congress on Evolutionary Computation 2013: 3307-3314 - [c14]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
A Supervised Learning Approach to Construct Hyper-heuristics for Constraint Satisfaction. MCPR 2013: 284-293 - [c13]José Carlos Ortiz-Bayliss, Jorge Humberto Moreno-Scott, Hugo Terashima-Marín:
Automatic Generation of Heuristics for Constraint Satisfaction Problems. NICSO 2013: 315-327 - [c12]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
Branching Schemes and Variable Ordering Heuristics for Constraint Satisfaction Problems: Is There Something to Learn? NICSO 2013: 329-342 - [c11]José Carlos Ortiz-Bayliss, Ender Ozcan, Andrew J. Parkes, Hugo Terashima-Marín:
A genetic programming hyper-heuristic: Turning features into heuristics for constraint satisfaction. UKCI 2013: 183-190 - 2012
- [c10]Jorge Humberto Moreno-Scott, José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos:
Challenging heuristics: evolving binary constraint satisfaction problems. GECCO 2012: 409-416 - [c9]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago Enrique Conant-Pablos, Ender Özcan, Andrew J. Parkes:
Improving the performance of vector hyper-heuristics through local search. GECCO 2012: 1269-1276 - 2011
- [c8]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Ender Özcan, Andrew J. Parkes:
On the idea of evolving decision matrix hyper-heuristics for solving constraint satisfaction problems. GECCO (Companion) 2011: 255-256 - [c7]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Peter Ross, Santiago Enrique Conant-Pablos:
Evolution of neural networks topologies and learning parameters to produce hyper-heuristics for constraint satisfaction problems. GECCO (Companion) 2011: 261-262 - [c6]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Santiago E. Conant-Pablos:
Neural Networks to Guide the Selection of Heuristics within Constraint Satisfaction Problems. MCPR 2011: 250-259 - [c5]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Ender Özcan, Andrew J. Parkes, Santiago Enrique Conant-Pablos:
Variable and Value Ordering Decision Matrix Hyper-heuristics: A Local Improvement Approach. MICAI (1) 2011: 125-136 - 2010
- [c4]José Carlos Ortiz-Bayliss, Ender Özcan, Andrew J. Parkes, Hugo Terashima-Marín:
Mapping the performance of heuristics for Constraint Satisfaction. IEEE Congress on Evolutionary Computation 2010: 1-8
2000 – 2009
- 2009
- [c3]José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, Peter Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón:
A neuro-evolutionary approach to produce general hyper-heuristics for the dynamic variable ordering in hard binary constraint satisfaction problems. GECCO 2009: 1811-1812 - 2008
- [c2]Hugo Terashima-Marín, José Carlos Ortiz-Bayliss, Peter Ross, Manuel Valenzuela-Rendón:
Hyper-heuristics for the dynamic variable ordering in constraint satisfaction problems. GECCO 2008: 571-578 - [c1]Hugo Terashima-Marín, José Carlos Ortiz-Bayliss, Peter Ross, Manuel Valenzuela-Rendón:
Using Hyper-heuristics for the Dynamic Variable Ordering in Binary Constraint Satisfaction Problems. MICAI 2008: 407-417
Coauthor Index
aka: Ivan M. Amaya-Contreras
aka: Santiago Enrique Conant-Pablos
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 19:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint