default search action
Vincent François-Lavet
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j7]Floris den Hengst, Martijn Otten, Paul W. G. Elbers, Frank van Harmelen, Vincent François-Lavet, Mark Hoogendoorn:
Guideline-informed reinforcement learning for mechanical ventilation in critical care. Artif. Intell. Medicine 147: 102742 (2024) - [j6]Ameet R. Jagesar, Martijn Otten, Tariq A. Dam, Laurens Biesheuvel, Dave A. Dongelmans, Sylvia Brinkman, Patrick J. Thoral, Vincent François-Lavet, Armand R. J. Girbes, Nicolette de Keizer, Harm-Jan de Grooth, Paul W. G. Elbers:
Comparative performance of intensive care mortality prediction models based on manually curated versus automatically extracted electronic health record data. Int. J. Medical Informatics 188: 105477 (2024) - [j5]Amjad Yousef Majid, Serge Saaybi, Vincent François-Lavet, R. Venkatesha Prasad, Chris J. M. Verhoeven:
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey. IEEE Trans. Neural Networks Learn. Syst. 35(9): 11939-11957 (2024) - [i20]Jacob E. Kooi, Mark Hoogendoorn, Vincent François-Lavet:
Latent Assistance Networks: Rediscovering Hyperbolic Tangents in RL. CoRR abs/2406.09079 (2024) - [i19]Taewoon Kim, Vincent François-Lavet, Michael Cochez:
Leveraging Knowledge Graph-Based Human-Like Memory Systems to Solve Partially Observable Markov Decision Processes. CoRR abs/2408.05861 (2024) - 2023
- [c17]Taewoon Kim, Michael Cochez, Vincent François-Lavet, Mark A. Neerincx, Piek Vossen:
A Machine with Short-Term, Episodic, and Semantic Memory Systems. AAAI 2023: 48-56 - [c16]Andreas W. M. Sauter, Erman Acar, Vincent François-Lavet:
A Meta-Reinforcement Learning Algorithm for Causal Discovery. CLeaR 2023: 602-619 - [c15]Olivier Moulin, Vincent François-Lavet, Paul W. G. Elbers, Mark Hoogendoorn:
Improving Generalization in Reinforcement Learning Through Forked Agents. IEA/AIE (2) 2023: 249-260 - [c14]Jacob E. Kooi, Mark Hoogendoorn, Vincent François-Lavet:
Disentangled (Un)Controllable Features. SSCI 2023: 695-702 - 2022
- [j4]Floris den Hengst, Vincent François-Lavet, Mark Hoogendoorn, Frank van Harmelen:
Planning for potential: efficient safe reinforcement learning. Mach. Learn. 111(6): 2255-2274 (2022) - [c13]Floris den Hengst, Vincent François-Lavet, Mark Hoogendoorn, Frank van Harmelen:
Reinforcement Learning with Option Machines. IJCAI 2022: 2909-2915 - [c12]Olivier Moulin, Vincent François-Lavet, Paul W. G. Elbers, Mark Hoogendoorn:
Improving generalization to new environments and removing catastrophic forgetting in Reinforcement Learning by using an eco-system of agents. WI/IAT 2022: 166-173 - [i18]Taewoon Kim, Michael Cochez, Vincent François-Lavet, Mark A. Neerincx, Piek Vossen:
A Machine With Human-Like Memory Systems. CoRR abs/2204.01611 (2022) - [i17]Olivier Moulin, Vincent François-Lavet, Paul W. G. Elbers, Mark Hoogendoorn:
Improving adaptability to new environments and removing catastrophic forgetting in Reinforcement Learning by using an eco-system of agents. CoRR abs/2204.06550 (2022) - [i16]Andreas Sauter, Erman Acar, Vincent François-Lavet:
A Meta-Reinforcement Learning Algorithm for Causal Discovery. CoRR abs/2207.08457 (2022) - [i15]Jacob E. Kooi, Mark Hoogendoorn, Vincent François-Lavet:
Disentangled (Un)Controllable Features. CoRR abs/2211.00086 (2022) - [i14]Taewoon Kim, Michael Cochez, Vincent François-Lavet, Mark A. Neerincx, Piek Vossen:
A Machine with Short-Term, Episodic, and Semantic Memory Systems. CoRR abs/2212.02098 (2022) - [i13]Olivier Moulin, Vincent François-Lavet, Mark Hoogendoorn:
Improving generalization in reinforcement learning through forked agents. CoRR abs/2212.06451 (2022) - 2021
- [c11]Shenyang Huang, Vincent François-Lavet, Guillaume Rabusseau:
Understanding Capacity Saturation in Incremental Learning. Canadian AI 2021 - [i12]Bonnie Li, Vincent François-Lavet, Thang Doan, Joelle Pineau:
Domain Adversarial Reinforcement Learning. CoRR abs/2102.07097 (2021) - [i11]Amjad Yousef Majid, Serge Saaybi, Tomas van Rietbergen, Vincent François-Lavet, R. Venkatesha Prasad, Chris J. M. Verhoeven:
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey. CoRR abs/2110.01411 (2021) - [i10]Geoffrey van Driessel, Vincent François-Lavet:
Component Transfer Learning for Deep RL Based on Abstract Representations. CoRR abs/2111.11525 (2021) - 2020
- [c10]Maxime Wabartha, Audrey Durand, Vincent François-Lavet, Joelle Pineau:
Handling Black Swan Events in Deep Learning with Diversely Extrapolated Neural Networks. IJCAI 2020: 2140-2147 - [c9]Vincent François-Lavet, Guillaume Rabusseau, Joelle Pineau, Damien Ernst, Raphael Fonteneau:
On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability (Extended Abstract). IJCAI 2020: 5055-5059 - [c8]Ruo Yu Tao, Vincent François-Lavet, Joelle Pineau:
Novelty Search in Representational Space for Sample Efficient Exploration. NeurIPS 2020 - [i9]Stefano Alletto, Shenyang Huang, Vincent François-Lavet, Yohei Nakata, Guillaume Rabusseau:
RandomNet: Towards Fully Automatic Neural Architecture Design for Multimodal Learning. CoRR abs/2003.01181 (2020) - [i8]Ruo Yu Tao, Vincent François-Lavet, Joelle Pineau:
Novelty Search in representational space for sample efficient exploration. CoRR abs/2009.13579 (2020)
2010 – 2019
- 2019
- [j3]Vincent François-Lavet, Guillaume Rabusseau, Joelle Pineau, Damien Ernst, Raphael Fonteneau:
On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability. J. Artif. Intell. Res. 65: 1-30 (2019) - [c7]Vincent François-Lavet, Yoshua Bengio, Doina Precup, Joelle Pineau:
Combined Reinforcement Learning via Abstract Representations. AAAI 2019: 3582-3589 - [i7]Shenyang Huang, Vincent François-Lavet, Guillaume Rabusseau:
Neural Architecture Search for Class-incremental Learning. CoRR abs/1909.06686 (2019) - 2018
- [j2]Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, Joelle Pineau:
An Introduction to Deep Reinforcement Learning. Found. Trends Mach. Learn. 11(3-4): 219-354 (2018) - [c6]Joshua Romoff, Peter Henderson, Alexandre Piché, Vincent François-Lavet, Joelle Pineau:
Reward Estimation for Variance Reduction in Deep Reinforcement Learning. CoRL 2018: 674-699 - [c5]Joshua Romoff, Alexandre Piché, Peter Henderson, Vincent François-Lavet, Joelle Pineau:
Reward Estimation for Variance Reduction in Deep Reinforcement Learning. ICLR (Workshop) 2018 - [i6]Joshua Romoff, Alexandre Piché, Peter Henderson, Vincent François-Lavet, Joelle Pineau:
Reward Estimation for Variance Reduction in Deep Reinforcement Learning. CoRR abs/1805.03359 (2018) - [i5]Vincent François-Lavet, Yoshua Bengio, Doina Precup, Joelle Pineau:
Combined Reinforcement Learning via Abstract Representations. CoRR abs/1809.04506 (2018) - [i4]Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, Joelle Pineau:
An Introduction to Deep Reinforcement Learning. CoRR abs/1811.12560 (2018) - 2017
- [b1]Vincent François-Lavet:
Contributions to deep reinforcement learning and its applications in smartgrids. University of Liège, Belgium, 2017 - [c4]Michael Castronovo, Vincent François-Lavet, Raphaël Fonteneau, Damien Ernst, Adrien Couëtoux:
Approximate Bayes Optimal Policy Search using Neural Networks. ICAART (2) 2017: 142-153 - [i3]Vincent François-Lavet, Damien Ernst, Raphael Fonteneau:
On overfitting and asymptotic bias in batch reinforcement learning with partial observability. CoRR abs/1709.07796 (2017) - 2015
- [c3]Samy Aittahar, Vincent François-Lavet, Stefan Lodeweyckx, Damien Ernst, Raphaël Fonteneau:
Imitative Learning for Online Planning in Microgrids. DARE 2015: 1-15 - [i2]Vincent François-Lavet, Raphaël Fonteneau, Damien Ernst:
How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies. CoRR abs/1512.02011 (2015) - 2014
- [c2]Vincent François-Lavet, Raphaël Fonteneau, Damien Ernst:
Using approximate dynamic programming for estimating the revenues of a hydrogen-based high-capacity storage device. ADPRL 2014: 1-8 - [c1]Antonio Sutera, Arnaud Joly, Vincent François-Lavet, Zixiao Aaron Qiu, Gilles Louppe, Damien Ernst, Pierre Geurts:
Simple Connectome Inference from Partial Correlation Statistics in Calcium Imaging. Neural Connectomics 2014: 23-34 - [i1]Antonio Sutera, Arnaud Joly, Vincent François-Lavet, Zixiao Aaron Qiu, Gilles Louppe, Damien Ernst, Pierre Geurts:
Simple connectome inference from partial correlation statistics in calcium imaging. CoRR abs/1406.7865 (2014) - 2013
- [j1]Vincent François-Lavet, François Henrotte, Laurent Stainier, Ludovic Noels, Christophe Geuzaine:
An energy-based variational model of ferromagnetic hysteresis for finite element computations. J. Comput. Appl. Math. 246: 243-250 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 20:46 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint