default search action
Michael Feischl
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j30]Philipp Bringmann, Michael Feischl, Ani Miraçi, Dirk Praetorius, Julian Streitberger:
On full linear convergence and optimal complexity of adaptive FEM with inexact solver. Comput. Math. Appl. 180: 102-129 (2025) - 2024
- [j29]Michael Feischl, Dirk Praetorius, Michele Ruggeri:
Computational Methods in Applied Mathematics (CMAM 2022 Conference, Part 1). Comput. Methods Appl. Math. 24(2): 279-282 (2024) - [j28]Michael Feischl, Hubert Hackl:
Adaptive Image Compression via Optimal Mesh Refinement. Comput. Methods Appl. Math. 24(2): 325-344 (2024) - [j27]Michael Feischl, Dirk Praetorius, Michele Ruggeri:
Computational Methods in Applied Mathematics (CMAM 2022 Conference, Part 2). Comput. Methods Appl. Math. 24(3): 529-532 (2024) - [i10]Michael Feischl, Caroline Lasser, Christian Lubich, Jörg Nick:
Regularized dynamical parametric approximation. CoRR abs/2403.19234 (2024) - [i9]Michael Feischl, Alexander Rieder, Fabian Zehetgruber:
Towards optimal hierarchical training of neural networks. CoRR abs/2407.02242 (2024) - 2023
- [j26]Jan Bohn, Michael Feischl, Balázs Kovács:
FEM-BEM Coupling for the Maxwell-Landau-Lifshitz-Gilbert Equations via Convolution Quadrature: Weak Form and Numerical Approximation. Comput. Methods Appl. Math. 23(1): 19-48 (2023) - [i8]Jan Bohn, Willy Dörfler, Michael Feischl, Stefan Karch:
Adaptive mesh refinement for the Landau-Lifshitz-Gilbert equation. CoRR abs/2303.07463 (2023) - [i7]Michael Feischl, Hubert Hackl:
Adaptive Image Compression via Optimal Mesh Refinement. CoRR abs/2304.01640 (2023) - [i6]Xin An, Josef Dick, Michael Feischl, Andrea Scaglioni, Thanh Tran:
Sparse grid approximation of the stochastic Landau-Lifshitz-Gilbert equation. CoRR abs/2310.11225 (2023) - [i5]Philipp Bringmann, Michael Feischl, Ani Miraçi, Dirk Praetorius, Julian Streitberger:
On full linear convergence and optimal complexity of adaptive FEM with inexact solver. CoRR abs/2311.15738 (2023) - 2022
- [j25]Michael Feischl:
Inf-sup stability implies quasi-orthogonality. Math. Comput. 91(337): 2059-2094 (2022) - 2021
- [j24]Jan Bohn, Michael Feischl:
Recurrent neural networks as optimal mesh refinement strategies. Comput. Math. Appl. 97: 61-76 (2021) - [j23]Michael Feischl, Andrea Scaglioni:
Convergence of adaptive stochastic collocation with finite elements. Comput. Math. Appl. 98: 139-156 (2021) - [j22]Josef Dick, Michael Feischl:
A quasi-Monte Carlo data compression algorithm for machine learning. J. Complex. 67: 101587 (2021) - [j21]Georgios Akrivis, Michael Feischl, Balázs Kovács, Christian Lubich:
Higher-order linearly implicit full discretization of the Landau-Lifshitz-Gilbert equation. Math. Comput. 90(329): 995-1038 (2021) - 2020
- [j20]Michael Feischl, Christoph Schwab:
Exponential convergence in \(H^1\) of hp-FEM for Gevrey regularity with isotropic singularities. Numerische Mathematik 144(2): 323-346 (2020) - [j19]Michael Feischl, Daniel Peterseim:
Sparse Compression of Expected Solution Operators. SIAM J. Numer. Anal. 58(6): 3144-3164 (2020) - [i4]Josef Dick, Michael Feischl:
A quasi-Monte Carlo data compression algorithm for machine learning. CoRR abs/2004.02491 (2020) - [i3]Michael Feischl:
Inf-sup stability implies quasi-orthogonality. CoRR abs/2008.12198 (2020) - [i2]Michael Feischl, Andrea Scaglioni:
Convergence of adaptive stochastic collocation with finite elements. CoRR abs/2008.12591 (2020)
2010 – 2019
- 2019
- [j18]Michael Feischl, Frances Y. Kuo, Ian H. Sloan:
Correction to: Fast random field generation with H-matrices. Numerische Mathematik 142(3): 787 (2019) - [j17]Michael Feischl:
Optimality of a Standard Adaptive Finite Element Method for the Stokes Problem. SIAM J. Numer. Anal. 57(3): 1124-1157 (2019) - [j16]Josef Dick, Michael Feischl, Christoph Schwab:
Improved Efficiency of a Multi-Index FEM for Computational Uncertainty Quantification. SIAM J. Numer. Anal. 57(4): 1744-1769 (2019) - [i1]Jan Bohn, Michael Feischl:
Recurrent Neural Networks as Optimal Mesh Refinement Strategies. CoRR abs/1909.04275 (2019) - 2018
- [j15]Michael Feischl, Frances Y. Kuo, Ian H. Sloan:
Fast random field generation with H-matrices. Numerische Mathematik 140(3): 639-676 (2018) - 2017
- [j14]Markus Aurada, Michael Feischl, Thomas Führer, Michael Karkulik, Jens Markus Melenk, Dirk Praetorius:
Local inverse estimates for non-local boundary integral operators. Math. Comput. 86(308): 2651-2686 (2017) - [j13]Michael Feischl, Gregor Gantner, Alexander Haberl, Dirk Praetorius:
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. Numerische Mathematik 136(1): 147-182 (2017) - [j12]Michael Feischl, Thanh Tran:
Existence of Regular Solutions of the Landau-Lifshitz-Gilbert Equation in 3D with Natural Boundary Conditions. SIAM J. Math. Anal. 49(6): 4470-4490 (2017) - [j11]Michael Feischl, Thanh Tran:
The Eddy Current-LLG Equations: FEM-BEM Coupling and A Priori Error Estimates. SIAM J. Numer. Anal. 55(4): 1786-1819 (2017) - 2016
- [j10]Michael Feischl, Gregor Gantner, Alexander Haberl, Dirk Praetorius, Thomas Führer:
Adaptive boundary element methods for optimal convergence of point errors. Numerische Mathematik 132(3): 541-567 (2016) - [j9]Michael Feischl, Dirk Praetorius, Kristoffer G. van der Zee:
An Abstract Analysis of Optimal Goal-Oriented Adaptivity. SIAM J. Numer. Anal. 54(3): 1423-1448 (2016) - 2015
- [j8]Michael Feischl, Thomas Führer, Michael Karkulik, Dirk Praetorius:
Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems. Numerische Mathematik 130(2): 199-223 (2015) - 2014
- [j7]Carsten Carstensen, Michael Feischl, Marcus Page, Dirk Praetorius:
Axioms of adaptivity. Comput. Math. Appl. 67(6): 1195-1253 (2014) - [j6]Michael Feischl, Thomas Führer, Gregor Mitscha-Eibl, Dirk Praetorius, Ernst P. Stephan:
Convergence of Adaptive BEM and Adaptive FEM-BEM Coupling for Estimators Without h-Weighting Factor. Comput. Methods Appl. Math. 14(4): 485-508 (2014) - [j5]Michael Feischl, Marcus Page, Dirk Praetorius:
Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. J. Comput. Appl. Math. 255: 481-501 (2014) - [j4]Markus Aurada, Michael Ebner, Michael Feischl, Samuel Ferraz-Leite, Thomas Führer, Petra Goldenits, Michael Karkulik, Markus Mayr, Dirk Praetorius:
HILBERT - a MATLAB implementation of adaptive 2D-BEM - HILBERT Is a Lovely Boundary Element Research Tool. Numer. Algorithms 67(1): 1-32 (2014) - [j3]Michael Feischl, Thomas Führer, Dirk Praetorius:
Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems. SIAM J. Numer. Anal. 52(2): 601-625 (2014) - 2013
- [j2]Markus Aurada, Michael Feischl, Thomas Führer, Michael Karkulik, Dirk Praetorius:
Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods. Comput. Methods Appl. Math. 13(3): 305-332 (2013) - [j1]Michael Feischl, Michael Karkulik, Jens Markus Melenk, Dirk Praetorius:
Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method. SIAM J. Numer. Anal. 51(2): 1327-1348 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:58 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint