default search action
Mohammad M. Ghassemi
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j4]Reza Khanmohammadi, Sari Saba-Sadiya, Sina Esfandiarpour, Tuka Alhanai, Mohammad Mahdi Ghassemi:
MambaNet: A Hybrid Neural Network for Predicting the NBA Playoffs. SN Comput. Sci. 5(5): 628 (2024) - [i16]Reza Khanmohammadi, Simerjot Kaur, Charese H. Smiley, Tuka Alhanai, Ivan Brugere, Armineh Nourbakhsh, Mohammad M. Ghassemi:
The Influence of Biomedical Research on Future Business Funding: Analyzing Scientific Impact and Content in Industrial Investments. CoRR abs/2401.00942 (2024) - [i15]Reza Khanmohammadi, Ahmed I. Ghanem, Kyle Verdecchia, Ryan Hall, Mohamed Elshaikh, Benjamin Movsas, Hassan Bagher-Ebadian, Indrin J. Chetty, Mohammad M. Ghassemi, Kundan Thind:
Iterative Prompt Refinement for Radiation Oncology Symptom Extraction Using Teacher-Student Large Language Models. CoRR abs/2402.04075 (2024) - [i14]Chuheng Wu, Seyed Farokh Atashzar, Mohammad M. Ghassemi, Tuka Alhanai:
An LSTM Feature Imitation Network for Hand Movement Recognition from sEMG Signals. CoRR abs/2405.19356 (2024) - [i13]Mohammad M. Ghassemi, Tuka Alhanai:
Machine-arranged Interactions Improve Institutional Belonging and Cohesion. CoRR abs/2407.19565 (2024) - [i12]Reza Khanmohammadi, Ahmed I. Ghanem, Kyle Verdecchia, Ryan Hall, Mohamed Elshaikh, Benjamin Movsas, Hassan Bagher-Ebadian, Luo Bing, Indrin J. Chetty, Tuka Alhanai, Kundan Thind, Mohammad M. Ghassemi:
Hybrid Student-Teacher Large Language Model Refinement for Cancer Toxicity Symptom Extraction. CoRR abs/2408.04775 (2024) - 2023
- [c31]Lujain Ibrahim, Mohammad M. Ghassemi, Tuka Alhanai:
Do Explanations Improve the Quality of AI-assisted Human Decisions? An Algorithm-in-the-Loop Analysis of Factual & Counterfactual Explanations. AAMAS 2023: 326-334 - [c30]Niloufar Eghbali, Tuka Alhanai, Mohammad M. Ghassemi:
Reinforcement Learning Approach to Sedation and Delirium Management in the Intensive Care Unit. BHI 2023: 1-5 - [c29]Matthew A. Reyna, Edilberto Amorim, Reza Sameni, James Weigle, Andoni Elola, Ali Bahrami Rad, Salman Seyedi, Hyeokhyen Kwon, Wei-Long Zheng, Mohammad M. Ghassemi, Michel J. A. M. van Putten, Jeannette Hofmeijer, Nicolas Gaspard, Adithya Sivaraju, Susan T. Herman, Jong Woo Lee, M. Brandon Westover, Gari D. Clifford:
Predicting Neurological Recovery from Coma After Cardiac Arrest: The George B. Moody PhysioNet Challenge 2023. CinC 2023: 1-4 - [i11]Shangyang Min, Mohammad Mahdi Ghassemi, Tuka Alhanai:
Feature Imitating Networks Enhance The Performance, Reliability And Speed Of Deep Learning On Biomedical Image Processing Tasks. CoRR abs/2306.14572 (2023) - [i10]Reza Khanmohammadi, Tuka Alhanai, Mohammad M. Ghassemi:
The Broad Impact of Feature Imitation: Neural Enhancements Across Financial, Speech, and Physiological Domains. CoRR abs/2309.12279 (2023) - [i9]Reza Khanmohammadi, Mohammad M. Ghassemi, Kyle Verdecchia, Ahmed I. Ghanem, Luo Bing, Indrin J. Chetty, Hassan Bagher-Ebadian, Farzan Siddiqui, Mohamed Elshaikh, Benjamin Movsas, Kundan Thind:
An Introduction to Natural Language Processing Techniques and Framework for Clinical Implementation in Radiation Oncology. CoRR abs/2311.02205 (2023) - 2022
- [c28]Sari Saba-Sadiya, Tuka Waddah AlHanai, Mohammad M. Ghassemi:
Feature Imitating Networks. ICASSP 2022: 4128-4132 - [c27]Prajjwal Bhattarai, Mohammad M. Ghassemi, Tuka Alhanai:
Open-source code repository attributes predict impact of computer science research. JCDL 2022: 16 - [i8]Allen R. Williams, Yoolim Jin, Anthony Duer, Tuka Alhanai, Mohammad M. Ghassemi:
Nightly Automobile Claims Prediction from Telematics-Derived Features: A Multilevel Approach. CoRR abs/2205.04616 (2022) - [i7]Reza Khanmohammadi, Sari Saba-Sadiya, Sina Esfandiarpour, Tuka Alhanai, Mohammad M. Ghassemi:
MambaNet: A Hybrid Neural Network for Predicting the NBA Playoffs. CoRR abs/2210.17060 (2022) - 2021
- [j3]Niloufar Eghbali, Tuka Alhanai, Mohammad M. Ghassemi:
Patient-Specific Sedation Management via Deep Reinforcement Learning. Frontiers Digit. Health 3: 608893 (2021) - [c26]Hooman Sedghamiz, Shivam Raval, Enrico Santus, Tuka Alhanai, Mohammad M. Ghassemi:
SupCL-Seq: Supervised Contrastive Learning for Downstream Optimized Sequence Representations. EMNLP (Findings) 2021: 3398-3403 - [c25]Shivam Raval, Hooman Sedghamiz, Enrico Santus, Tuka Alhanai, Mohammad M. Ghassemi, Emmanuele Chersoni:
Exploring a Unified Sequence-To-Sequence Transformer for Medical Product Safety Monitoring in Social Media. EMNLP (Findings) 2021: 3534-3546 - [c24]Lujain Ibrahim, Mohammad M. Ghassemi, Tuka Alhanai:
Modeling Simultaneous Preferences for Age, Gender, Race, and Professional Profiles in Government-Expense Spending: A Conjoint Analysis. HCOMP 2021: 84-96 - [c23]Abhinav Nadh Thirupathi, Tuka Alhanai, Mohammad M. Ghassemi:
A machine learning approach to detect early signs of startup success. ICAIF 2021: 9:1-9:8 - [c22]Sari Sadiya, Tuka Alhanai, Mohammad M. Ghassemi:
Artifact Detection and Correction in EEG data: A Review. NER 2021: 495-498 - [i6]Sari Sadiya, Tuka Alhanai, Mohammad M. Ghassemi:
Artifact Detection and Correction in EEG data: A Review. CoRR abs/2106.13081 (2021) - [i5]Shivam Raval, Hooman Sedghamiz, Enrico Santus, Tuka Alhanai, Mohammad M. Ghassemi, Emmanuele Chersoni:
Exploring a Unified Sequence-To-Sequence Transformer for Medical Product Safety Monitoring in Social Media. CoRR abs/2109.05815 (2021) - [i4]Hooman Sedghamiz, Shivam Raval, Enrico Santus, Tuka Alhanai, Mohammad M. Ghassemi:
SupCL-Seq: Supervised Contrastive Learning for Downstream Optimized Sequence Representations. CoRR abs/2109.07424 (2021) - [i3]Sari Saba-Sadiya, Tuka Alhanai, Mohammad M. Ghassemi:
Feature Imitating Networks. CoRR abs/2110.04831 (2021) - [i2]Reza Khanmohammadi, Mitra Sadat Mirshafiee, Mohammad Mahdi Ghassemi, Tuka Alhanai:
Fetal Gender Identification using Machine and Deep Learning Algorithms on Phonocardiogram Signals. CoRR abs/2110.06131 (2021) - 2020
- [j2]Sari Saba-Sadiya, Eric Chantland, Tuka Alhanai, Taosheng Liu, Mohammad M. Ghassemi:
Unsupervised EEG Artifact Detection and Correction. Frontiers Digit. Health 2: 608920 (2020) - [c21]Sari Saba-Sadiya, Tuka Alhanai, Taosheng Liu, Mohammad M. Ghassemi:
EEG Channel Interpolation Using Deep Encoder-decoder Networks. BIBM 2020: 2432-2439 - [c20]Armineh Nourbakhsh, Mohammad M. Ghassemi, Steven Pomerville:
SPread: Automated Financial Metric Extraction and Spreading Tool from Earnings Reports. WSDM 2020: 853-856 - [i1]Sari Saba-Sadiya, Tuka Alhanai, Taosheng Liu, Mohammad M. Ghassemi:
EEG Channel Interpolation Using Deep Encoder-decoder Netwoks. CoRR abs/2009.12244 (2020)
2010 – 2019
- 2018
- [b1]Mohammad Mahdi Ghassemi:
Life after death: techniques for the prognostication of coma outcomes after cardiac arrest. Massachusetts Institute of Technology, Cambridge, USA, 2018 - [c19]Mohammad M. Ghassemi, Tuka Al Hanai, M. Brandon Westover, Roger G. Mark, Shamim Nemati:
Personalized Medication Dosing Using Volatile Data Streams. AAAI Workshops 2018: 435-442 - [c18]Mohammad M. Ghassemi, Benjamin Moody, Li-Wei H. Lehman, Christopher Song, Qiao Li, Haoqi Sun, M. Brandon Westover, Gari D. Clifford:
You Snooze, You Win: The PhysioNet/Computing in Cardiology Challenge 2018. CinC 2018: 1-4 - [c17]Mohammad M. Ghassemi, Tuka Al Hanai, Jesse Daniel Raffa, Roger G. Mark, Shamim Nemati, Falgun H. Chokshi:
How is the Doctor Feeling? ICU Provider Sentiment is Associated with Diagnostic Imaging Utilization. EMBC 2018: 4058-4064 - [c16]Rongmei Lin, Matthew D. Stanley, Mohammad M. Ghassemi, Shamim Nemati:
A Deep Deterministic Policy Gradient Approach to Medication Dosing and Surveillance in the ICU. EMBC 2018: 4927-4931 - [c15]Tuka Al Hanai, Mohammad M. Ghassemi, James R. Glass:
Detecting Depression with Audio/Text Sequence Modeling of Interviews. INTERSPEECH 2018: 1716-1720 - 2017
- [c14]Tuka Waddah AlHanai, Mohammad Mahdi Ghassemi:
Predicting Latent Narrative Mood Using Audio and Physiologic Data. AAAI 2017: 948-954 - [c13]Mohammad M. Ghassemi, Willow Jarvis, Tuka Alhanai, Emery N. Brown, Roger G. Mark, M. Brandon Westover:
An open-source tool for the transcription of paper-spreadsheet data: Code and supplemental materials available online: Https: //github.com/deskool/images to spreadsheets. IEEE BigData 2017: 935-941 - 2016
- [j1]Alistair E. W. Johnson, Mohammad M. Ghassemi, Shamim Nemati, Katherine E. Niehaus, David A. Clifton, Gari D. Clifford:
Machine Learning and Decision Support in Critical Care. Proc. IEEE 104(2): 444-466 (2016) - [c12]Quanzhi Li, Sameena Shah, Mohammad Mahdi Ghassemi, Rui Fang, Armineh Nourbakhsh, Xiaomo Liu:
Using paraphrases to improve tweet classification: Comparing WordNet and word embedding approaches. IEEE BigData 2016: 4014-4016 - [c11]Hao Du, Mohammad M. Ghassemi, Mengling Feng:
The effects of deep network topology on mortality prediction. EMBC 2016: 2602-2605 - [c10]Shamim Nemati, Mohammad M. Ghassemi, Gari D. Clifford:
Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. EMBC 2016: 2978-2981 - [c9]Shamim Nemati, Mohammad M. Ghassemi, Vaidehi Ambai, Nino Isakadze, Oleksiy Levantsevych, Amit J. Shah, Gari D. Clifford:
Monitoring and detecting atrial fibrillation using wearable technology. EMBC 2016: 3394-3397 - 2015
- [c8]Mohammad Mahdi Ghassemi, Roger G. Mark, Shamim Nemati:
A Visualization of Evolving Clinical Sentiment Using Vector Representations of Clinical Notes. CinC 2015: 629-632 - [c7]Li-Wei H. Lehman, Mohammad M. Ghassemi, Jasper Snoek, Shamim Nemati:
Patient Prognosis from Vital Sign Time Series: Combining Convolutional Neural Networks with a Dynamical Systems Approach. CinC 2015: 1069-1072 - [c6]Mohammad M. Ghassemi, Edilberto Amorim, Sandipan B. Pati, Roger G. Mark, Emery N. Brown, Patrick L. Purdon, M. Brandon Westover:
An enhanced cerebral recovery index for coma prognostication following cardiac arrest. EMBC 2015: 534-537 - [c5]Armineh Nourbakhsh, Xiaomo Liu, Sameena Shah, Rui Fang, Mohammad Mahdi Ghassemi, Quanzhi Li:
Newsworthy Rumor Events: A Case Study of Twitter. ICDM Workshops 2015: 27-32 - 2014
- [c4]Mengling Feng, Mohammad M. Ghassemi, Thomas Brennan, John Ellenberger, Ishrar Hussain, Roger G. Mark:
Big Data for Critical Care with Cloud-based In-Memory Database. AMIA 2014 - [c3]Shamim Nemati, Mohammad M. Ghassemi:
A fast and memory-efficient algorithm for learning and retrieval of phenotypic dynamics in multivariate cohort time series. IEEE BigData 2014: 41-44 - [c2]Mohammad M. Ghassemi, Li-Wei H. Lehman, Jasper Snoek, Shamim Nemati:
Global Optimization Approaches for Parameter Tuning in Biomedical Signal Processing: A Focus of Multi-scale Entropy. CinC 2014: 993-996 - [c1]Mengling Feng, Mohammad M. Ghassemi, Thomas Brennan, John Ellenberger, Ishrar Hussain, Roger G. Mark:
Management and analytic of biomedical big data with cloud-based in-memory database and dynamic querying: a hands-on experience with real-world data. KDD 2014: 1970
Coauthor Index
aka: Tuka Alhanai
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:20 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint