default search action
David E. Carlson
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j11]Ziyang Jiang, Tongshu Zheng, Yiling Liu, David E. Carlson:
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel. Trans. Mach. Learn. Res. 2024 (2024) - [i21]Lei Duan, Ziyang Jiang, David E. Carlson:
Augmenting Ground-Level PM2.5 Prediction via Kriging-Based Pseudo-Label Generation. CoRR abs/2401.08061 (2024) - [i20]Feng Zhou, Yanjie Zhou, Longjie Wang, Yun Peng, David E. Carlson, Liyun Tu:
Distillation Learning Guided by Image Reconstruction for One-Shot Medical Image Segmentation. CoRR abs/2408.03616 (2024) - [i19]Austin Talbot, Corey J. Keller, David E. Carlson, Alex V. Kotlar:
Generative Principal Component Regression via Variational Inference. CoRR abs/2409.02327 (2024) - 2023
- [c30]Ziyang Jiang, Zhuoran Hou, Yiling Liu, Yiman Ren, Keyu Li, David E. Carlson:
Estimating Causal Effects using a Multi-task Deep Ensemble. ICML 2023: 15023-15040 - [i18]Ziyang Jiang, Zhuoran Hou, Yiling Liu, Yiman Ren, Keyu Li, David E. Carlson:
Estimating Causal Effects using a Multi-task Deep Ensemble. CoRR abs/2301.11351 (2023) - [i17]Yiling Liu, Juncheng Dong, Ziyang Jiang, Ahmed Aloui, Keyu Li, Michael Hunter Klein, Vahid Tarokh, David E. Carlson:
Domain Adaptation via Rebalanced Sub-domain Alignment. CoRR abs/2302.02009 (2023) - [i16]Ziyang Jiang, Yiling Liu, Michael Hunter Klein, Ahmed Aloui, Yiman Ren, Keyu Li, Vahid Tarokh, David E. Carlson:
Causal Mediation Analysis with Multi-dimensional and Indirectly Observed Mediators. CoRR abs/2306.07918 (2023) - 2022
- [j10]Tianhui Zhou, William E. Carson IV, David E. Carlson:
Estimating Potential Outcome Distributions with Collaborating Causal Networks. Trans. Mach. Learn. Res. 2022 (2022) - [j9]Liyun Tu, Austin Talbot, Neil Gallagher, David E. Carlson:
Supervising the Decoder of Variational Autoencoders to Improve Scientific Utility. IEEE Trans. Signal Process. 70: 5954-5966 (2022) - [c29]Siyang Yuan, Yitong Li, Dong Wang, Ke Bai, Lawrence Carin, David E. Carlson:
Learning to Weight Filter Groups for Robust Classification. WACV 2022: 3321-3330 - [i15]William E. Carson IV, Austin Talbot, David E. Carlson:
AugmentedPCA: A Python Package of Supervised and Adversarial Linear Factor Models. CoRR abs/2201.02547 (2022) - [i14]Tianhui Zhou, William E. Carson IV, Michael Hunter Klein, David E. Carlson:
Multiple Domain Causal Networks. CoRR abs/2205.06791 (2022) - [i13]Ziyang Jiang, Tongshu Zheng, David E. Carlson:
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel. CoRR abs/2205.07384 (2022) - 2021
- [j8]Tianhui Zhou, Yitong Li, Yuan Wu, David E. Carlson:
Estimating Uncertainty Intervals from Collaborating Networks. J. Mach. Learn. Res. 22: 257:1-257:47 (2021) - [j7]Tongshu Zheng, Michael Bergin, Guoyin Wang, David E. Carlson:
Local PM2.5 Hotspot Detector at 300 m Resolution: A Random Forest-Convolutional Neural Network Joint Model Jointly Trained on Satellite Images and Meteorology. Remote. Sens. 13(7): 1356 (2021) - [c28]Neil Gallagher, Kafui Dzirasa, David E. Carlson:
Directed Spectrum Measures Improve Latent Network Models Of Neural Populations. NeurIPS 2021: 7421-7435 - [i12]Liyun Tu, Austin Talbot, Neil Gallagher, David E. Carlson:
Supervising the Decoder of Variational Autoencoders to Improve Scientific Utility. CoRR abs/2109.04561 (2021) - [i11]Tianhui Zhou, David E. Carlson:
Estimating Potential Outcome Distributions with Collaborating Causal Networks. CoRR abs/2110.01664 (2021) - [i10]William E. Carson IV, Dmitry Yu. Isaev, Samantha Major, Guillermo Sapiro, Geraldine Dawson, David E. Carlson:
Adversarial Factor Models for the Generation of Improved Autism Diagnostic Biomarkers. CoRR abs/2111.15347 (2021) - 2020
- [c27]Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Chen, David E. Carlson, Lawrence Carin:
Dynamic Embedding on Textual Networks via a Gaussian Process. AAAI 2020: 7562-7569 - [c26]Dmitry Yu. Isaev, Dmitry Tchapyjnikov, C. Michael Cotten, David Tanaka, Natalia Martínez, Martín Bertrán, Guillermo Sapiro, David E. Carlson:
Attention-Based Network for Weak Labels in Neonatal Seizure Detection. MLHC 2020: 479-507 - [i9]Tianhui Zhou, Yitong Li, Yuan Wu, David E. Carlson:
Estimating Uncertainty Intervals from Collaborating Networks. CoRR abs/2002.05212 (2020) - [i8]Austin Talbot, David B. Dunson, Kafui Dzirasa, David E. Carlson:
Supervised Autoencoders Learn Robust Joint Factor Models of Neural Activity. CoRR abs/2004.05209 (2020)
2010 – 2019
- 2019
- [c25]Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, David E. Carlson:
On Target Shift in Adversarial Domain Adaptation. AISTATS 2019: 616-625 - [c24]Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin, David E. Carlson, Jianfeng Gao:
StoryGAN: A Sequential Conditional GAN for Story Visualization. CVPR 2019: 6329-6338 - [i7]Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, David E. Carlson:
On Target Shift in Adversarial Domain Adaptation. CoRR abs/1903.06336 (2019) - [i6]Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Cheng, David E. Carlson, Lawrence Carin:
Gaussian-Process-Based Dynamic Embedding for Textual Networks. CoRR abs/1910.02187 (2019) - 2018
- [c23]Yitong Li, Martin Renqiang Min, Dinghan Shen, David E. Carlson, Lawrence Carin:
Video Generation From Text. AAAI 2018: 7065-7072 - [c22]Yitong Li, Michael Murias, Geraldine Dawson, David E. Carlson:
Extracting Relationships by Multi-Domain Matching. NeurIPS 2018: 6799-6810 - [i5]Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin, David E. Carlson, Jianfeng Gao:
StoryGAN: A Sequential Conditional GAN for Story Visualization. CoRR abs/1812.02784 (2018) - 2017
- [c21]Ari Pakman, Dar Gilboa, David E. Carlson, Liam Paninski:
Stochastic Bouncy Particle Sampler. ICML 2017: 2741-2750 - [c20]Jin Hyung Lee, David E. Carlson, Hooshmand Shokri Razaghi, Weichi Yao, Georges A. Goetz, Espen Hagen, Eleanor Batty, E. J. Chichilnisky, Gaute T. Einevoll, Liam Paninski:
YASS: Yet Another Spike Sorter. NIPS 2017: 4002-4012 - [c19]Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, Kafui Dzirasa, Lawrence Carin, David E. Carlson:
Targeting EEG/LFP Synchrony with Neural Nets. NIPS 2017: 4620-4630 - [c18]Neil Gallagher, Kyle R. Ulrich, Austin Talbot, Kafui Dzirasa, Lawrence Carin, David E. Carlson:
Cross-Spectral Factor Analysis. NIPS 2017: 6842-6852 - [i4]Yitong Li, Martin Renqiang Min, Dinghan Shen, David E. Carlson, Lawrence Carin:
Video Generation From Text. CoRR abs/1710.00421 (2017) - 2016
- [j6]David E. Carlson, Ya-Ping Hsieh, Edo Collins, Lawrence Carin, Volkan Cevher:
Stochastic Spectral Descent for Discrete Graphical Models. IEEE J. Sel. Top. Signal Process. 10(2): 296-311 (2016) - [j5]Josh Merel, David E. Carlson, Liam Paninski, John P. Cunningham:
Neuroprosthetic Decoder Training as Imitation Learning. PLoS Comput. Biol. 12(5) (2016) - [c17]Chunyuan Li, Changyou Chen, David E. Carlson, Lawrence Carin:
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks. AAAI 2016: 1788-1794 - [c16]Changyou Chen, David E. Carlson, Zhe Gan, Chunyuan Li, Lawrence Carin:
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization. AISTATS 2016: 1051-1060 - [c15]Zhao Song, Ricardo Henao, David E. Carlson, Lawrence Carin:
Learning Sigmoid Belief Networks via Monte Carlo Expectation Maximization. AISTATS 2016: 1347-1355 - [c14]Yan Kaganovsky, Ikenna Odinaka, David E. Carlson, Lawrence Carin:
Parallel Majorization Minimization with Dynamically Restricted Domains for Nonconvex Optimization. AISTATS 2016: 1497-1505 - [c13]David E. Carlson, Patrick Stinson, Ari Pakman, Liam Paninski:
Partition Functions from Rao-Blackwellized Tempered Sampling. ICML 2016: 2896-2905 - 2015
- [c12]David E. Carlson, Volkan Cevher, Lawrence Carin:
Stochastic Spectral Descent for Restricted Boltzmann Machines. AISTATS 2015 - [c11]Zhe Gan, Ricardo Henao, David E. Carlson, Lawrence Carin:
Learning Deep Sigmoid Belief Networks with Data Augmentation. AISTATS 2015 - [c10]Zhe Gan, Changyou Chen, Ricardo Henao, David E. Carlson, Lawrence Carin:
Scalable Deep Poisson Factor Analysis for Topic Modeling. ICML 2015: 1823-1832 - [c9]Kyle R. Ulrich, David E. Carlson, Kafui Dzirasa, Lawrence Carin:
GP Kernels for Cross-Spectrum Analysis. NIPS 2015: 1999-2007 - [c8]Zhe Gan, Chunyuan Li, Ricardo Henao, David E. Carlson, Lawrence Carin:
Deep Temporal Sigmoid Belief Networks for Sequence Modeling. NIPS 2015: 2467-2475 - [c7]David E. Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, Volkan Cevher:
Preconditioned Spectral Descent for Deep Learning. NIPS 2015: 2971-2979 - [i3]Zhe Gan, Chunyuan Li, Ricardo Henao, David E. Carlson, Lawrence Carin:
Deep Temporal Sigmoid Belief Networks for Sequence Modeling. CoRR abs/1509.07087 (2015) - [i2]Josh Merel, David E. Carlson, Liam Paninski, John P. Cunningham:
Neuroprosthetic decoder training as imitation learning. CoRR abs/1511.04156 (2015) - [i1]Changyou Chen, David E. Carlson, Zhe Gan, Chunyuan Li, Lawrence Carin:
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization. CoRR abs/1512.07962 (2015) - 2014
- [j4]David E. Carlson, Joshua T. Vogelstein, Qisong Wu, Wenzhao Lian, Mingyuan Zhou, Colin R. Stoetzner, Daryl Kipke, Douglas Weber, David B. Dunson, Lawrence Carin:
Multichannel Electrophysiological Spike Sorting via Joint Dictionary Learning and Mixture Modeling. IEEE Trans. Biomed. Eng. 61(1): 41-54 (2014) - [j3]Liming Wang, David Edwin Carlson, Miguel R. D. Rodrigues, A. Robert Calderbank, Lawrence Carin:
A Bregman Matrix and the Gradient of Mutual Information for Vector Poisson and Gaussian Channels. IEEE Trans. Inf. Theory 60(5): 2611-2629 (2014) - [c6]Changwei Hu, Eunsu Ryu, David E. Carlson, Yingjian Wang, Lawrence Carin:
Latent Gaussian Models for Topic Modeling. AISTATS 2014: 393-401 - [c5]David E. Carlson, Jana Schaich Borg, Kafui Dzirasa, Lawrence Carin:
On the relations of LFPs & Neural Spike Trains. NIPS 2014: 2060-2068 - [c4]Kyle R. Ulrich, David E. Carlson, Wenzhao Lian, Jana Schaich Borg, Kafui Dzirasa, Lawrence Carin:
Analysis of Brain States from Multi-Region LFP Time-Series. NIPS 2014: 2483-2491 - 2013
- [c3]Liming Wang, David E. Carlson, Miguel R. D. Rodrigues, David Wilcox, A. Robert Calderbank, Lawrence Carin:
Designed Measurements for Vector Count Data. NIPS 2013: 1142-1150 - [c2]David E. Carlson, Vinayak A. Rao, Joshua T. Vogelstein, Lawrence Carin:
Real-Time Inference for a Gamma Process Model of Neural Spiking. NIPS 2013: 2805-2813 - 2011
- [j2]Minhua Chen, David E. Carlson, Aimee K. Zaas, Christopher W. Woods, Geoffrey S. Ginsburg, Alfred O. Hero III, Joseph E. Lucas, Lawrence Carin:
Detection of Viruses Via Statistical Gene Expression Analysis. IEEE Trans. Biomed. Eng. 58(3): 468-479 (2011) - [c1]Bo Chen, David E. Carlson, Lawrence Carin:
On the Analysis of Multi-Channel Neural Spike Data. NIPS 2011: 936-944
1980 – 1989
- 1980
- [j1]David E. Carlson:
Bit-Oriented Data Link Control Procedures. IEEE Trans. Commun. 28(4): 455-467 (1980)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 20:15 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint