default search action
Frank Neumann 0001
Person information
- affiliation: University of Adelaide, Australia
- affiliation: Max Planck Institute for Informatics, Saarbrücken, Germany
Other persons with the same name
- Frank Neumann 0002 — Technical University of Berlin, Germany
- Frank Neumann 0003 — Universität Hannover, Theoretische Chemie, Germany
- Frank Neumann 0004 — HTW Berlin - University of Applied Sciences, Germany
- Frank Neumann 0005 — University of Leicester, School of Mathematics and Actuarial Science, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j68]Adel Nikfarjam, Aneta Neumann, Frank Neumann:
On the Use of Quality Diversity Algorithms for the Travelling Thief Problem. ACM Trans. Evol. Learn. Optim. 4(2): 12 (2024) - [c249]Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, Hung X. Nguyen:
Limited Query Graph Connectivity Test. AAAI 2024: 20718-20725 - [c248]Zahra Ghasemi, Mehdi Neshat, Chris Aldrich, John Karageorgos, Max Zanin, Frank Neumann, Lei Chen:
Enhanced Genetic Programming Models with Multiple Equations for Accurate Semi-Autogenous Grinding Mill Throughput Prediction. CEC 2024: 1-9 - [c247]Frank Neumann, Aneta Neumann, Hemant Kumar Singh:
Evolutionary computation for stochastic problems. GECCO Companion 2024: 1352-1368 - [c246]Saba Sadeghi Ahouei, Jacob de Nobel, Aneta Neumann, Thomas Bäck, Frank Neumann:
Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem. GECCO 2024 - [c245]Denis Antipov, Aneta Neumann, Frank Neumann:
A Detailed Experimental Analysis of Evolutionary Diversity Optimization for OneMinMax. GECCO 2024 - [c244]Benjamin Doerr, Joshua D. Knowles, Aneta Neumann, Frank Neumann:
A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis. GECCO 2024 - [c243]Thilina Pathirage Don, Aneta Neumann, Frank Neumann:
The Chance Constrained Travelling Thief Problem: Problem Formulations and Algorithms. GECCO 2024 - [c242]Sharlotte Gounder, Frank Neumann, Aneta Neumann:
Evolutionary Diversity Optimisation for Sparse Directed Communication Networks. GECCO 2024 - [c241]Adel Nikfarjam, Ty Stanford, Aneta Neumann, Dorothea Dumuid, Frank Neumann:
Quality Diversity Approaches for Time-Use Optimisation to Improve Health Outcomes. GECCO 2024 - [c240]Andre Opris, Duc-Cuong Dang, Frank Neumann, Dirk Sudholt:
Runtime Analyses of NSGA-III on Many-Objective Problems. GECCO 2024 - [c239]Ishara Hewa Pathiranage, Frank Neumann, Denis Antipov, Aneta Neumann:
Effective 2- and 3-Objective MOEA/D Approaches for the Chance Constrained Knapsack Problem. GECCO 2024 - [c238]Ishara Hewa Pathiranage, Frank Neumann, Denis Antipov, Aneta Neumann:
Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem. GECCO 2024 - [c237]Marcus Schmidbauer, Andre Opris, Jakob Bossek, Frank Neumann, Dirk Sudholt:
Guiding Quality Diversity on Monotone Submodular Functions: Customising the Feature Space by Adding Boolean Conjunctions. GECCO 2024 - [c236]Xiankun Yan, Aneta Neumann, Frank Neumann:
Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems. GECCO 2024 - [c235]Furong Ye, Frank Neumann, Jacob de Nobel, Aneta Neumann, Thomas Bäck:
What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms. GECCO 2024 - [c234]Denis Antipov, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Runtime Analysis of Evolutionary Diversity Optimization on a Tri-Objective Version of the (LeadingOnes, TrailingZeros) Problem. PPSN (3) 2024: 19-35 - [c233]Xiankun Yan, Aneta Neumann, Frank Neumann:
Sliding Window Bi-objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions. PPSN (1) 2024: 20-35 - [c232]Frank Neumann, Carsten Witt:
Sliding Window 3-Objective Pareto Optimization for Problems with Chance Constraints. PPSN (3) 2024: 36-52 - [c231]Kokila Kasuni Perera, Frank Neumann, Aneta Neumann:
Multi-objective Evolutionary Approaches for the Knapsack Problem with Stochastic Profits. PPSN (1) 2024: 116-132 - [c230]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Evolutionary Multi-objective Diversity Optimization. PPSN (4) 2024: 117-134 - [c229]Jonathan Gadea Harder, Aneta Neumann, Frank Neumann:
Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem. PPSN (3) 2024: 149-165 - [c228]Frank Neumann, Günter Rudolph:
Archive-Based Single-Objective Evolutionary Algorithms for Submodular Optimization. PPSN (3) 2024: 166-180 - [c227]Denis Antipov, Aneta Neumann, Frank Neumann:
Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential. PPSN (3) 2024: 181-196 - [i144]Zahra Ghasemi, Mehdi Neshat, Chris Aldrich, John Karageorgos, Max Zanin, Frank Neumann, Lei Chen:
Enhanced Genetic Programming Models with Multiple Equations for Accurate Semi-Autogenous Grinding Mill Throughput Prediction. CoRR abs/2401.05382 (2024) - [i143]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Evolutionary Multi-Objective Diversity Optimization. CoRR abs/2401.07454 (2024) - [i142]Benjamin Doerr, Joshua D. Knowles, Aneta Neumann, Frank Neumann:
A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis. CoRR abs/2404.03838 (2024) - [i141]Ishara Hewa Pathiranage, Frank Neumann, Denis Antipov, Aneta Neumann:
Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem. CoRR abs/2404.06014 (2024) - [i140]Andre Opris, Duc-Cuong Dang, Frank Neumann, Dirk Sudholt:
Runtime Analyses of NSGA-III on Many-Objective Problems. CoRR abs/2404.11433 (2024) - [i139]Denis Antipov, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Runtime Analysis of Evolutionary Diversity Optimization on the Multi-objective (LeadingOnes, TrailingZeros) Problem. CoRR abs/2404.11496 (2024) - [i138]Jonathan Gadea Harder, Aneta Neumann, Frank Neumann:
Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem. CoRR abs/2404.11784 (2024) - [i137]Xiankun Yan, Aneta Neumann, Frank Neumann:
Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems. CoRR abs/2404.11907 (2024) - [i136]Saba Sadeghi Ahouei, Jacob de Nobel, Aneta Neumann, Thomas Bäck, Frank Neumann:
Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem. CoRR abs/2405.18772 (2024) - [i135]Frank Neumann, Carsten Witt:
Sliding Window 3-Objective Pareto Optimization for Problems with Chance Constraints. CoRR abs/2406.04899 (2024) - [i134]Frank Neumann, Günter Rudolph:
Archive-based Single-Objective Evolutionary Algorithms for Submodular Optimization. CoRR abs/2406.13414 (2024) - [i133]Denis Antipov, Aneta Neumann, Frank Neumann:
Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential. CoRR abs/2407.08963 (2024) - [i132]Xiankun Yan, Aneta Neumann, Frank Neumann:
Sliding Window Bi-Objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions. CoRR abs/2407.09731 (2024) - [i131]Maria Laura Santoni, Elena Raponi, Aneta Neumann, Frank Neumann, Mike Preuss, Carola Doerr:
Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization. CoRR abs/2408.16393 (2024) - [i130]Jack Kearney, Frank Neumann, Andrew M. Sutton:
Fixed-Parameter Tractability of the (1+1) Evolutionary Algorithm on Random Planted Vertex Covers. CoRR abs/2409.10144 (2024) - 2023
- [c226]Mingyu Guo, Max Ward, Aneta Neumann, Frank Neumann, Hung Nguyen:
Scalable Edge Blocking Algorithms for Defending Active Directory Style Attack Graphs. AAAI 2023: 5649-5656 - [c225]Gabor Zoltai, Yue Xie, Frank Neumann:
A Study of Fitness Gains in Evolving Finite State Machines. AI (2) 2023: 479-490 - [c224]Frank Neumann, Aneta Neumann, Chao Qian, Anh Viet Do, Jacob de Nobel, Diederick Vermetten, Saba Sadeghi Ahouei, Furong Ye, Hao Wang, Thomas Bäck:
Benchmarking Algorithms for Submodular Optimization Problems Using IOHProfiler. CEC 2023: 1-9 - [c223]Michael Stimson, William Reid, Aneta Neumann, Simon Ratcliffe, Frank Neumann:
Improving Confidence in Evolutionary Mine Scheduling via Uncertainty Discounting. CEC 2023: 1-10 - [c222]Frank Neumann, Carsten Witt:
Fast Pareto Optimization Using Sliding Window Selection. ECAI 2023: 1771-1778 - [c221]Xiankun Yan, Anh Viet Do, Feng Shi, Xiaoyu Qin, Frank Neumann:
Optimizing Chance-Constrained Submodular Problems with Variable Uncertainties. ECAI 2023: 2826-2833 - [c220]Denis Antipov, Aneta Neumann, Frank Neumann:
Rigorous Runtime Analysis of Diversity Optimization with GSEMO on OneMinMax. FOGA 2023: 3-14 - [c219]Jack Kearney, Frank Neumann, Andrew M. Sutton:
Fixed-Parameter Tractability of the (1 + 1) Evolutionary Algorithm on Random Planted Vertex Covers. FOGA 2023: 96-104 - [c218]Jakob Bossek, Aneta Neumann, Frank Neumann:
On the Impact of Basic Mutation Operators and Populations within Evolutionary Algorithms for the Dynamic Weighted Traveling Salesperson Problem. GECCO 2023: 248-256 - [c217]Frank Neumann, Carsten Witt:
3-Objective Pareto Optimization for Problems with Chance Constraints. GECCO 2023: 731-739 - [c216]Adel Nikfarjam, Ralf Rothenberger, Frank Neumann, Tobias Friedrich:
Evolutionary Diversity Optimisation in Constructing Satisfying Assignments. GECCO 2023: 938-945 - [c215]Diksha Goel, Aneta Neumann, Frank Neumann, Hung Nguyen, Mingyu Guo:
Evolving Reinforcement Learning Environment to Minimize Learner's Achievable Reward: An Application on Hardening Active Directory Systems. GECCO 2023: 1348-1356 - [c214]Aneta Neumann, Sharlotte Gounder, Xiankun Yan, Gregory Sherman, Benjamin Campbell, Mingyu Guo, Frank Neumann:
Diversity Optimization for the Detection and Concealment of Spatially Defined Communication Networks. GECCO 2023: 1436-1444 - [c213]Frank Neumann, Aneta Neumann, Hemant K. Singh:
Evolutionary computation for stochastic problems. GECCO Companion 2023: 1463-1476 - [c212]Samuel Baguley, Tobias Friedrich, Aneta Neumann, Frank Neumann, Marcus Pappik, Ziena Zeif:
Fixed Parameter Multi-Objective Evolutionary Algorithms for the W-Separator Problem. GECCO 2023: 1537-1545 - [c211]Tobias Friedrich, Timo Kötzing, Aneta Neumann, Frank Neumann, Aishwarya Radhakrishnan:
Analysis of (1+1) EA on LeadingOnes with Constraints. GECCO 2023: 1584-1592 - [c210]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Diverse Approximations for Monotone Submodular Maximization Problems with a Matroid Constraint. IJCAI 2023: 5558-5566 - [c209]Anh Viet Do, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Rigorous Runtime Analysis of MOEA/D for Solving Multi-Objective Minimum Weight Base Problems. NeurIPS 2023 - [i129]Frank Neumann, Aneta Neumann, Chao Qian, Anh Viet Do, Jacob de Nobel, Diederick Vermetten, Saba Sadeghi Ahouei, Furong Ye, Hao Wang, Thomas Bäck:
Benchmarking Algorithms for Submodular Optimization Problems Using IOHProfiler. CoRR abs/2302.01464 (2023) - [i128]Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, Hung Nguyen:
Limited Query Graph Connectivity Test. CoRR abs/2302.13036 (2023) - [i127]Kokila Perera, Aneta Neumann, Frank Neumann:
Evolutionary Multi-Objective Algorithms for the Knapsack Problems with Stochastic Profits. CoRR abs/2303.01695 (2023) - [i126]Furong Ye, Frank Neumann, Jacob de Nobel, Aneta Neumann, Thomas Bäck:
What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms. CoRR abs/2303.04611 (2023) - [i125]Diksha Goel, Aneta Neumann, Frank Neumann, Hung Nguyen, Mingyu Guo:
Evolving Reinforcement Learning Environment to Minimize Learner's Achievable Reward: An Application on Hardening Active Directory Systems. CoRR abs/2304.03998 (2023) - [i124]Frank Neumann, Carsten Witt:
3-Objective Pareto Optimization for Problems with Chance Constraints. CoRR abs/2304.08774 (2023) - [i123]Frank Neumann, Carsten Witt:
Fast Pareto Optimization Using Sliding Window Selection. CoRR abs/2305.07178 (2023) - [i122]Adel Nikfarjam, Ralf Rothenberger, Frank Neumann, Tobias Friedrich:
Evolutionary Diversity Optimisation in Constructing Satisfying Assignments. CoRR abs/2305.11457 (2023) - [i121]Michael Stimson, William Reid, Aneta Neumann, Simon Ratcliffe, Frank Neumann:
Improving Confidence in Evolutionary Mine Scheduling via Uncertainty Discounting. CoRR abs/2305.17957 (2023) - [i120]Tobias Friedrich, Timo Kötzing, Aneta Neumann, Frank Neumann, Aishwarya Radhakrishnan:
Analysis of the (1+1) EA on LeadingOnes with Constraints. CoRR abs/2305.18267 (2023) - [i119]Jakob Bossek, Aneta Neumann, Frank Neumann:
On the Impact of Operators and Populations within Evolutionary Algorithms for the Dynamic Weighted Traveling Salesperson Problem. CoRR abs/2305.18955 (2023) - [i118]Anh Viet Do, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Rigorous Runtime Analysis of MOEA/D for Solving Multi-Objective Minimum Weight Base Problems. CoRR abs/2306.03409 (2023) - [i117]Denis Antipov, Aneta Neumann, Frank Neumann:
Rigorous Runtime Analysis of Diversity Optimization with GSEMO on OneMinMax. CoRR abs/2307.07248 (2023) - [i116]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Diverse Approximations for Monotone Submodular Maximization Problems with a Matroid Constraint. CoRR abs/2307.07567 (2023) - [i115]Xiankun Yan, Anh Viet Do, Feng Shi, Xiaoyu Qin, Frank Neumann:
Optimizing Chance-Constrained Submodular Problems with Variable Uncertainties. CoRR abs/2309.14359 (2023) - [i114]Gabor Zoltai, Yue Xie, Frank Neumann:
A Study of Fitness Gains in Evolving Finite State Machines. CoRR abs/2310.13203 (2023) - [i113]Zahra Ghasemi, Mehdi Neshat, Chris Aldrich, John Karageorgos, Max Zanin, Frank Neumann, Lei Chen:
A Hybrid Intelligent Framework for Maximising SAG Mill Throughput: An Integration of Expert Knowledge, Machine Learning and Evolutionary Algorithms for Parameter Optimisation. CoRR abs/2312.10992 (2023) - 2022
- [j67]Vahid Roostapour, Aneta Neumann, Frank Neumann, Tobias Friedrich:
Pareto optimization for subset selection with dynamic cost constraints. Artif. Intell. 302: 103597 (2022) - [j66]Johannes Lengler, Frank Neumann:
Editorial. Algorithmica 84(6): 1571-1572 (2022) - [j65]Vahid Roostapour, Aneta Neumann, Frank Neumann:
Single- and multi-objective evolutionary algorithms for the knapsack problem with dynamically changing constraints. Theor. Comput. Sci. 924: 129-147 (2022) - [j64]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Analysis of Evolutionary Diversity Optimization for Permutation Problems. ACM Trans. Evol. Learn. Optim. 2(3): 11:1-11:27 (2022) - [c208]Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, Hung Nguyen:
Practical Fixed-Parameter Algorithms for Defending Active Directory Style Attack Graphs. AAAI 2022: 9360-9367 - [c207]Hirad Assimi, Frank Neumann, Markus Wagner, Xiaodong Li:
Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. EvoCOP 2022: 111-126 - [c206]Jakob Bossek, Frank Neumann:
Exploring the feature space of TSP instances using quality diversity. GECCO 2022: 186-194 - [c205]Adel Nikfarjam, Aneta Neumann, Frank Neumann:
On the use of quality diversity algorithms for the traveling thief problem. GECCO 2022: 260-268 - [c204]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Niching-based evolutionary diversity optimization for the traveling salesperson problem. GECCO 2022: 684-693 - [c203]Adel Nikfarjam, Aneta Neumann, Frank Neumann:
Evolutionary diversity optimisation for the traveling thief problem. GECCO 2022: 749-756 - [c202]Yue Xie, Aneta Neumann, Frank Neumann:
An optimization strategy for the complex large-scale stockpile blending problem. GECCO Companion 2022: 770-773 - [c201]Jakob Bossek, Aneta Neumann, Frank Neumann:
Evolutionary diversity optimization for combinatorial optimization: tutorial at GECCO'22, Boston, USA. GECCO Companion 2022: 824-842 - [c200]Aneta Neumann, Denis Antipov, Frank Neumann:
Coevolutionary Pareto diversity optimization. GECCO 2022: 832-839 - [c199]Diksha Goel, Max Hector Ward-Graham, Aneta Neumann, Frank Neumann, Hung Nguyen, Mingyu Guo:
Defending active directory by combining neural network based dynamic program and evolutionary diversity optimisation. GECCO 2022: 1191-1199 - [c198]Frank Neumann, Dirk Sudholt, Carsten Witt:
The compact genetic algorithm struggles on Cliff functions. GECCO 2022: 1426-1433 - [c197]Aneta Neumann, Frank Neumann, Chao Qian:
Evolutionary submodular optimisation: tutorial. GECCO Companion 2022: 1427-1449 - [c196]Frank Neumann, Carsten Witt:
Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables. IJCAI 2022: 4800-4806 - [c195]Adel Nikfarjam, Aneta Neumann, Jakob Bossek, Frank Neumann:
Co-evolutionary Diversity Optimisation for the Traveling Thief Problem. PPSN (1) 2022: 237-249 - [c194]Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann, Frank Neumann:
Computing High-Quality Solutions for the Patient Admission Scheduling Problem Using Evolutionary Diversity Optimisation. PPSN (1) 2022: 250-264 - [c193]Aneta Neumann, Yue Xie, Frank Neumann:
Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profits. PPSN (1) 2022: 294-307 - [c192]Yue Xie, Aneta Neumann, Ty Stanford, Charlotte Lund Rasmussen, Dorothea Dumuid, Frank Neumann:
Evolutionary Time-Use Optimization for Improving Children's Health Outcomes. PPSN (2) 2022: 323-337 - [c191]Adel Nikfarjam, Anh Viet Do, Frank Neumann:
Analysis of Quality Diversity Algorithms for the Knapsack Problem. PPSN (2) 2022: 413-427 - [c190]Feng Shi, Xiankun Yan, Frank Neumann:
Runtime Analysis of Simple Evolutionary Algorithms for the Chance-Constrained Makespan Scheduling Problem. PPSN (2) 2022: 526-541 - [c189]Frank Neumann, Carsten Witt:
Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed Linear Functions. PPSN (2) 2022: 542-554 - [c188]Tobias Friedrich, Timo Kötzing, Frank Neumann, Aishwarya Radhakrishnan:
Theoretical Study of Optimizing Rugged Landscapes with the cGA. PPSN (2) 2022: 586-599 - [c187]Hirad Assimi, Ben Koch, Chris Garcia, Markus Wagner, Frank Neumann:
Run-of-mine stockyard recovery scheduling and optimisation for multiple reclaimers. SAC 2022: 1074-1083 - [i112]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Niching-based Evolutionary Diversity Optimization for the Traveling Salesperson Problem. CoRR abs/2201.10316 (2022) - [i111]Jakob Bossek, Frank Neumann:
Exploring the Feature Space of TSP Instances Using Quality Diversity. CoRR abs/2202.02077 (2022) - [i110]Adel Nikfarjam, Aneta Neumann, Frank Neumann:
Evolutionary Diversity Optimisation for The Traveling Thief Problem. CoRR abs/2204.02709 (2022) - [i109]Diksha Goel, Max Ward, Aneta Neumann, Frank Neumann, Hung Nguyen, Mingyu Guo:
Defending Active Directory by Combining Neural Network based Dynamic Program and Evolutionary Diversity Optimisation. CoRR abs/2204.03397 (2022) - [i108]Frank Neumann, Dirk Sudholt, Carsten Witt:
The Compact Genetic Algorithm Struggles on Cliff Functions. CoRR abs/2204.04904 (2022) - [i107]Aneta Neumann, Denis Antipov, Frank Neumann:
Coevolutionary Pareto Diversity Optimization. CoRR abs/2204.05457 (2022) - [i106]Aneta Neumann, Yue Xie, Frank Neumann:
Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profits. CoRR abs/2204.05597 (2022) - [i105]Yue Xie, Aneta Neumann, Ty Stanford, Charlotte Lund Rasmussen, Dorothea Dumuid, Frank Neumann:
Evolutionary Time-Use Optimization for Improving Children's Health Outcomes. CoRR abs/2206.11505 (2022) - [i104]Adel Nikfarjam, Aneta Neumann, Jakob Bossek, Frank Neumann:
Co-Evolutionary Diversity Optimisation for the Traveling Thief Problem. CoRR abs/2207.14036 (2022) - [i103]Adel Nikfarjam, Anh Viet Do, Frank Neumann:
Analysis of Quality Diversity Algorithms for the Knapsack Problem. CoRR abs/2207.14037 (2022) - [i102]Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann, Frank Neumann:
Computing High-Quality Solutions for the Patient Admission Scheduling Problem using Evolutionary Diversity Optimisation. CoRR abs/2207.14112 (2022) - [i101]Frank Neumann, Carsten Witt:
Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed Linear Functions. CoRR abs/2208.05670 (2022) - [i100]Tobias Friedrich, Timo Kötzing, Frank Neumann, Aishwarya Radhakrishnan:
Theoretical Study of Optimizing Rugged Landscapes with the cGA. CoRR abs/2211.13801 (2022) - [i99]Mingyu Guo, Max Ward, Aneta Neumann, Frank Neumann, Hung Nguyen:
Scalable Edge Blocking Algorithms for Defending Active Directory Style Attack Graphs. CoRR abs/2212.04326 (2022) - [i98]Feng Shi, Xiankun Yan, Frank Neumann:
Runtime Performance of Evolutionary Algorithms for the Chance-constrained Makespan Scheduling Problem. CoRR abs/2212.11478 (2022) - 2021
- [j63]Feng Shi, Frank Neumann, Jianxin Wang:
Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica 83(4): 906-939 (2021) - [j62]Jakob Bossek, Frank Neumann, Pan Peng, Dirk Sudholt:
Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem. Algorithmica 83(10): 3148-3179 (2021) - [j61]Frank Neumann, Mojgan Pourhassan, Carsten Witt:
Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint. Algorithmica 83(10): 3209-3237 (2021) - [j60]Wanru Gao, Samadhi Nallaperuma, Frank Neumann:
Feature-Based Diversity Optimization for Problem Instance Classification. Evol. Comput. 29(1): 107-128 (2021) - [j59]Derek Weber, Frank Neumann:
Amplifying influence through coordinated behaviour in social networks. Soc. Netw. Anal. Min. 11(1): 111 (2021) - [j58]Feng Shi, Frank Neumann, Jianxin Wang:
Time complexity analysis of evolutionary algorithms for 2-hop (1, 2)-minimum spanning tree problem. Theor. Comput. Sci. 893: 159-175 (2021) - [j57]Benjamin Doerr, Frank Neumann:
A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization. ACM Trans. Evol. Learn. Optim. 1(4): 16:1-16:43 (2021) - [c186]Anh Viet Do, Frank Neumann:
Pareto Optimization for Subset Selection with Dynamic Partition Matroid Constraints. AAAI 2021: 12284-12292 - [c185]Yue Xie, Aneta Neumann, Frank Neumann:
Heuristic Strategies for Solving Complex Interacting Large-Scale Stockpile Blending Problems. CEC 2021: 1288-1295 - [c184]Adel Nikfarjam, Jakob Bossek, Aneta Neumann, Frank Neumann:
Computing diverse sets of high quality TSP tours by EAX-based evolutionary diversity optimisation. FOGA 2021: 9:1-9:11 - [c183]Hirad Assimi, Frank Neumann, Markus Wagner, Xiaodong Li:
Novelty particle swarm optimisation for truss optimisation problems. GECCO Companion 2021: 67-68 - [c182]Jakob Bossek, Frank Neumann:
Evolutionary diversity optimization and the minimum spanning tree problem. GECCO 2021: 198-206 - [c181]Aneta Neumann, Jakob Bossek, Frank Neumann:
Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. GECCO 2021: 261-269 - [c180]Jakob Bossek, Aneta Neumann, Frank Neumann:
Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. GECCO 2021: 556-564 - [c179]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Analysis of evolutionary diversity optimisation for permutation problems. GECCO 2021: 574-582 - [c178]Adel Nikfarjam, Jakob Bossek, Aneta Neumann, Frank Neumann:
Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. GECCO 2021: 600-608 - [c177]Aneta Neumann, Frank Neumann, Chao Qian:
Evolutionary submodular optimisation. GECCO Companion 2021: 918-940 - [c176]Yue Xie, Aneta Neumann, Frank Neumann:
Heuristic strategies for solving complex interacting stockpile blending problem with chance constraints. GECCO 2021: 1079-1087 - [c175]Yue Xie, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Runtime analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem with correlated uniform weights. GECCO 2021: 1187-1194 - [c174]William Reid, Aneta Neumann, Simon Ratcliffe, Frank Neumann:
Advanced mine optimisation under uncertainty using evolution. GECCO Companion 2021: 1605-1613 - [c173]Chao Bian, Chao Qian, Frank Neumann, Yang Yu:
Fast Pareto Optimization for Subset Selection with Dynamic Cost Constraints. IJCAI 2021: 2191-2197 - [c172]Jakob Bossek, Aneta Neumann, Frank Neumann:
Exact Counting and Sampling of Optima for the Knapsack Problem. LION 2021: 40-54 - [c171]Hirad Assimi, Ben Koch, Chris Garcia, Markus Wagner, Frank Neumann:
Modelling and optimization of run-of-mine stockpile recovery. SAC 2021: 450-458 - [c170]Tobias Friedrich, Frank Neumann, Ralf Rothenberger, Andrew M. Sutton:
Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily. SAT 2021: 188-206 - [i97]William Reid, Aneta Neumann, Simon Ratcliffe, Frank Neumann:
Advanced Ore Mine Optimisation under Uncertainty Using Evolution. CoRR abs/2102.05235 (2021) - [i96]Yue Xie, Aneta Neumann, Frank Neumann:
Heuristic Strategies for Solving Complex Interacting Stockpile Blending Problem with Chance Constraints. CoRR abs/2102.05303 (2021) - [i95]Yue Xie, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Runtime Analysis of RLS and the (1+1) EA for the Chance-constrained Knapsack Problem with Correlated Uniform Weights. CoRR abs/2102.05778 (2021) - [i94]Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Analysis of Evolutionary Diversity Optimisation for Permutation Problems. CoRR abs/2102.11469 (2021) - [i93]Derek Weber, Frank Neumann:
A General Method to Find Highly Coordinating Communities in Social Media through Inferred Interaction Links. CoRR abs/2103.03409 (2021) - [i92]Yue Xie, Aneta Neumann, Frank Neumann:
Heuristic Strategies for Solving Complex Interacting Large-Scale Stockpile Blending Problems. CoRR abs/2104.03440 (2021) - [i91]Jakob Bossek, Aneta Neumann, Frank Neumann:
Breeding Diverse Packings for the Knapsack Problem by Means of Diversity-Tailored Evolutionary Algorithms. CoRR abs/2104.13133 (2021) - [i90]Adel Nikfarjam, Jakob Bossek, Aneta Neumann, Frank Neumann:
Entropy-Based Evolutionary Diversity Optimisation for the Traveling Salesperson Problem. CoRR abs/2104.13538 (2021) - [i89]Jakob Bossek, Frank Neumann, Pan Peng, Dirk Sudholt:
Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem. CoRR abs/2105.12525 (2021) - [i88]Jakob Bossek, Aneta Neumann, Frank Neumann:
Exact Counting and Sampling of Optima for the Knapsack Problem. CoRR abs/2106.07412 (2021) - [i87]Adel Nikfarjam, Jakob Bossek, Aneta Neumann, Frank Neumann:
Computing Diverse Sets of High Quality TSP Tours by EAX-Based Evolutionary Diversity Optimisation. CoRR abs/2108.05005 (2021) - [i86]Frank Neumann, Carsten Witt:
Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables. CoRR abs/2109.05799 (2021) - [i85]Feng Shi, Frank Neumann, Jianxin Wang:
Time Complexity Analysis of Evolutionary Algorithms for 2-Hop (1, 2)-Minimum Spanning Tree Problem. CoRR abs/2110.04701 (2021) - [i84]Hirad Assimi, Frank Neumann, Markus Wagner, Xiaodong Li:
Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. CoRR abs/2112.07875 (2021) - [i83]Adel Nikfarjam, Aneta Neumann, Frank Neumann:
On the Use of Quality Diversity Algorithms for The Traveling Thief Problem. CoRR abs/2112.08627 (2021) - [i82]Hirad Assimi, Ben Koch, Chris Garcia, Markus Wagner, Frank Neumann:
Run-of-Mine Stockyard Recovery Scheduling and Optimisation for Multiple Reclaimers. CoRR abs/2112.12294 (2021) - [i81]Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, Hung Nguyen:
Practical Fixed-Parameter Algorithms for Defending Active Directory Style Attack Graphs. CoRR abs/2112.13175 (2021) - 2020
- [j56]Feng Shi, Martin Schirneck, Tobias Friedrich, Timo Kötzing, Frank Neumann:
Correction to: Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints. Algorithmica 82(10): 3117-3123 (2020) - [j55]Behrooz Ghasemishabankareh, Xiaodong Li, Melih Ozlen, Frank Neumann:
Probabilistic tree-based representation for solving minimum cost integer flow problems with nonlinear non-convex cost functions. Appl. Soft Comput. 86 (2020) - [j54]Aneta Neumann, Bradley Alexander, Frank Neumann:
Evolutionary Image Transition and Painting Using Random Walks. Evol. Comput. 28(4): 643-675 (2020) - [j53]Tat-Jun Chin, Zhipeng Cai, Frank Neumann:
Robust Fitting in Computer Vision: Easy or Hard? Int. J. Comput. Vis. 128(3): 575-587 (2020) - [j52]Tobias Friedrich, Timo Kötzing, J. A. Gregor Lagodzinski, Frank Neumann, Martin Schirneck:
Analysis of the (1 + 1) EA on subclasses of linear functions under uniform and linear constraints. Theor. Comput. Sci. 832: 3-19 (2020) - [j51]Mojgan Pourhassan, Vahid Roostapour, Frank Neumann:
Runtime analysis of RLS and (1 + 1) EA for the dynamic weighted vertex cover problem. Theor. Comput. Sci. 832: 20-41 (2020) - [j50]Edgar Covantes Osuna, Wanru Gao, Frank Neumann, Dirk Sudholt:
Design and analysis of diversity-based parent selection schemes for speeding up evolutionary multi-objective optimisation. Theor. Comput. Sci. 832: 123-142 (2020) - [c169]Benjamin Doerr, Carola Doerr, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Optimization of Chance-Constrained Submodular Functions. AAAI 2020: 1460-1467 - [c168]Derek Weber, Frank Neumann:
Who's in the Gang? Revealing Coordinating Communities in Social Media. ASONAM 2020: 89-93 - [c167]Maryam Hasani-Shoreh, Renato Hermoza Aragonés, Frank Neumann:
Neural Networks in Evolutionary Dynamic Constrained Optimization: Computational Cost and Benefits. ECAI 2020: 275-282 - [c166]Hirad Assimi, Oscar Harper, Yue Xie, Aneta Neumann, Frank Neumann:
Evolutionary Bi-Objective Optimization for the Dynamic Chance-Constrained Knapsack Problem Based on Tail Bound Objectives. ECAI 2020: 307-314 - [c165]Vanja Doskoc, Tobias Friedrich, Andreas Göbel, Aneta Neumann, Frank Neumann, Francesco Quinzan:
Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings. ECAI 2020: 435-442 - [c164]Yue Xie, Aneta Neumann, Frank Neumann:
Specific single- and multi-objective evolutionary algorithms for the chance-constrained knapsack problem. GECCO 2020: 271-279 - [c163]Vahid Roostapour, Jakob Bossek, Frank Neumann:
Runtime analysis of evolutionary algorithms with biased mutation for the multi-objective minimum spanning tree problem. GECCO 2020: 551-559 - [c162]Anh Viet Do, Jakob Bossek, Aneta Neumann, Frank Neumann:
Evolving diverse sets of tours for the travelling salesperson problem. GECCO 2020: 681-689 - [c161]Aneta Neumann, Frank Neumann:
Evolutionary computation for digital art. GECCO Companion 2020: 901-926 - [c160]Jakob Bossek, Frank Neumann, Pan Peng, Dirk Sudholt:
More effective randomized search heuristics for graph coloring through dynamic optimization. GECCO 2020: 1277-1285 - [c159]Jakob Bossek, Katrin Casel, Pascal Kerschke, Frank Neumann:
The node weight dependent traveling salesperson problem: approximation algorithms and randomized search heuristics. GECCO 2020: 1286-1294 - [c158]Ragav Sachdeva, Frank Neumann, Markus Wagner:
The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms. ICONIP (5) 2020: 220-228 - [c157]Jakob Bossek, Carola Doerr, Pascal Kerschke, Aneta Neumann, Frank Neumann:
Evolving Sampling Strategies for One-Shot Optimization Tasks. PPSN (1) 2020: 111-124 - [c156]Jakob Bossek, Aneta Neumann, Frank Neumann:
Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions. PPSN (1) 2020: 346-359 - [c155]Aneta Neumann, Frank Neumann:
Optimising Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-objective Algorithms. PPSN (1) 2020: 404-417 - [c154]Anh Viet Do, Frank Neumann:
Maximizing Submodular or Monotone Functions Under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms. PPSN (2) 2020: 588-603 - [c153]Maryam Hasani-Shoreh, Renato Hermoza Aragonés, Frank Neumann:
Using Neural Networks and Diversifying Differential Evolution for Dynamic Optimisation. SSCI 2020: 289-296 - [c152]Aneta Neumann, Frank Neumann:
Human Interactive EEG-Based Evolutionary Image Animation. SSCI 2020: 678-685 - [p6]Frank Neumann, Andrew M. Sutton:
Parameterized Complexity Analysis of Randomized Search Heuristics. Theory of Evolutionary Computation 2020: 213-248 - [p5]Frank Neumann, Mojgan Pourhassan, Vahid Roostapour:
Analysis of Evolutionary Algorithms in Dynamic and Stochastic Environments. Theory of Evolutionary Computation 2020: 323-357 - [e4]Benjamin Doerr, Frank Neumann:
Theory of Evolutionary Computation - Recent Developments in Discrete Optimization. Natural Computing Series, Springer 2020, ISBN 978-3-030-29413-7 [contents] - [i80]Frank Neumann, Andrew M. Sutton:
Parameterized Complexity Analysis of Randomized Search Heuristics. CoRR abs/2001.05120 (2020) - [i79]Feng Shi, Frank Neumann, Jianxin Wang:
Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. CoRR abs/2001.08903 (2020) - [i78]Maryam Hasani-Shoreh, Renato Hermoza Aragonés, Frank Neumann:
Neural Networks in Evolutionary Dynamic Constrained Optimization: Computational Cost and Benefits. CoRR abs/2001.11588 (2020) - [i77]Jakob Bossek, Katrin Casel, Pascal Kerschke, Frank Neumann:
The Node Weight Dependent Traveling Salesperson Problem: Approximation Algorithms and Randomized Search Heuristics. CoRR abs/2002.01070 (2020) - [i76]Hirad Assimi, Oscar Harper, Yue Xie, Aneta Neumann, Frank Neumann:
Evolutionary Bi-objective Optimization for the Dynamic Chance-Constrained Knapsack Problem Based on Tail Bound Objectives. CoRR abs/2002.06766 (2020) - [i75]Aneta Neumann, Bradley Alexander, Frank Neumann:
Evolutionary Image Transition and Painting Using Random Walks. CoRR abs/2003.01517 (2020) - [i74]Yue Xie, Aneta Neumann, Frank Neumann:
Specific Single- and Multi-Objective Evolutionary Algorithms for the Chance-Constrained Knapsack Problem. CoRR abs/2004.03205 (2020) - [i73]Anh Viet Do, Jakob Bossek, Aneta Neumann, Frank Neumann:
Evolving Diverse Sets of Tours for the Travelling Salesperson Problem. CoRR abs/2004.09188 (2020) - [i72]Vahid Roostapour, Jakob Bossek, Frank Neumann:
Runtime Analysis of Evolutionary Algorithms with Biased Mutation for the Multi-Objective Minimum Spanning Tree Problem. CoRR abs/2004.10424 (2020) - [i71]Ragav Sachdeva, Frank Neumann, Markus Wagner:
The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms. CoRR abs/2004.12045 (2020) - [i70]Vahid Roostapour, Aneta Neumann, Frank Neumann:
Evolutionary Multi-Objective Optimization for the Dynamic Knapsack Problem. CoRR abs/2004.12574 (2020) - [i69]Jakob Bossek, Frank Neumann, Pan Peng, Dirk Sudholt:
More Effective Randomized Search Heuristics for Graph Coloring Through Dynamic Optimization. CoRR abs/2005.13825 (2020) - [i68]Jakob Bossek, Aneta Neumann, Frank Neumann:
Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions. CoRR abs/2006.03260 (2020) - [i67]Aneta Neumann, Frank Neumann:
Optimising Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms. CoRR abs/2006.11444 (2020) - [i66]Anh Viet Do, Frank Neumann:
Maximizing Submodular or Monotone Functions under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms. CoRR abs/2006.12773 (2020) - [i65]Benjamin Doerr, Frank Neumann:
A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization. CoRR abs/2006.16709 (2020) - [i64]Maryam Hasani-Shoreh, Renato Hermoza Aragonés, Frank Neumann:
Using Neural Networks and Diversifying Differential Evolution for Dynamic Optimisation. CoRR abs/2008.04002 (2020) - [i63]Derek Weber, Frank Neumann:
Who's in the Gang? Revealing Coordinating Communities in Social Media. CoRR abs/2010.08180 (2020) - [i62]Frank Neumann, Mojgan Pourhassan, Carsten Witt:
Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint. CoRR abs/2010.10885 (2020) - [i61]Jakob Bossek, Frank Neumann:
Evolutionary Diversity Optimization and the Minimum Spanning Tree Problem. CoRR abs/2010.10913 (2020) - [i60]Aneta Neumann, Jakob Bossek, Frank Neumann:
Computing Diverse Sets of Solutions for Monotone Submodular Optimisation Problems. CoRR abs/2010.11486 (2020) - [i59]Anh Viet Do, Frank Neumann:
Pareto Optimization for Subset Selection with Dynamic Partition Matroid Constraints. CoRR abs/2012.08738 (2020)
2010 – 2019
- 2019
- [j49]Aneta Neumann, Frank Neumann, Tobias Friedrich:
Quasi-random Image Transition and Animation. Aust. J. Intell. Inf. Process. Syst. 16(1): 10-18 (2019) - [j48]Feng Shi, Martin Schirneck, Tobias Friedrich, Timo Kötzing, Frank Neumann:
Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints. Algorithmica 81(2): 828-857 (2019) - [j47]Holger H. Hoos, Frank Neumann, Heike Trautmann:
Foreword. Evol. Comput. 27(1): 1-2 (2019) - [j46]Pascal Kerschke, Holger H. Hoos, Frank Neumann, Heike Trautmann:
Automated Algorithm Selection: Survey and Perspectives. Evol. Comput. 27(1): 3-45 (2019) - [j45]Mojgan Pourhassan, Frank Neumann:
Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem. Evol. Comput. 27(3): 525-558 (2019) - [j44]Mojgan Pourhassan, Feng Shi, Frank Neumann:
Parameterized Analysis of Multiobjective Evolutionary Algorithms and the Weighted Vertex Cover Problem. Evol. Comput. 27(4): 559-575 (2019) - [c151]Tobias Friedrich, Andreas Göbel, Frank Neumann, Francesco Quinzan, Ralf Rothenberger:
Greedy Maximization of Functions with Bounded Curvature under Partition Matroid Constraints. AAAI 2019: 2272-2279 - [c150]Frank Neumann, Andrew M. Sutton:
Evolving Solutions to Community-Structured Satisfiability Formulas. AAAI 2019: 2346-2353 - [c149]Vahid Roostapour, Aneta Neumann, Frank Neumann, Tobias Friedrich:
Pareto Optimization for Subset Selection with Dynamic Cost Constraints. AAAI 2019: 2354-2361 - [c148]Wanru Gao, Mojgan Pourhassan, Vahid Roostapour, Frank Neumann:
Runtime Analysis of Evolutionary Multi-objective Algorithms Optimising the Degree and Diameter of Spanning Trees. EMO 2019: 504-515 - [c147]Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, Heike Trautmann:
Evolving diverse TSP instances by means of novel and creative mutation operators. FOGA 2019: 58-71 - [c146]Vahid Roostapour, Mojgan Pourhassan, Frank Neumann:
Analysis of baseline evolutionary algorithms for the packing while travelling problem. FOGA 2019: 124-132 - [c145]Feng Shi, Frank Neumann, Jianxin Wang:
Runtime analysis of evolutionary algorithms for the depth restricted (1, 2)-minimum spanning tree problem. FOGA 2019: 133-146 - [c144]Frank Neumann, Andrew M. Sutton:
Runtime analysis of the (1 + 1) evolutionary algorithm for the chance-constrained knapsack problem. FOGA 2019: 147-153 - [c143]Benjamin Doerr, Carola Doerr, Frank Neumann:
Fast re-optimization via structural diversity. GECCO 2019: 233-241 - [c142]Yue Xie, Oscar Harper, Hirad Assimi, Aneta Neumann, Frank Neumann:
Evolutionary algorithms for the chance-constrained knapsack problem. GECCO 2019: 338-346 - [c141]Jakob Bossek, Christian Grimme, Frank Neumann:
On the benefits of biased edge-exchange mutation for the multi-criteria spanning tree problem. GECCO 2019: 516-523 - [c140]Aneta Neumann, Wanru Gao, Markus Wagner, Frank Neumann:
Evolutionary diversity optimization using multi-objective indicators. GECCO 2019: 837-845 - [c139]Aneta Neumann, Frank Neumann:
Evolutionary computation for digital art. GECCO (Companion) 2019: 1056-1076 - [c138]Jakob Bossek, Frank Neumann, Pan Peng, Dirk Sudholt:
Runtime analysis of randomized search heuristics for dynamic graph coloring. GECCO 2019: 1443-1451 - [c137]Frank Neumann, Mojgan Pourhassan, Carsten Witt:
Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. GECCO 2019: 1506-1514 - [c136]Maryam Hasani-Shoreh, Frank Neumann:
On the Use of Diversity Mechanisms in Dynamic Constrained Continuous Optimization. ICONIP (1) 2019: 644-657 - [p4]Mohammad Reza Bonyadi, Zbigniew Michalewicz, Markus Wagner, Frank Neumann:
Evolutionary Computation for Multicomponent Problems: Opportunities and Future Directions. Optimization in Industry 2019: 13-30 - [i58]Benjamin Doerr, Carola Doerr, Frank Neumann:
Fast Re-Optimization via Structural Diversity. CoRR abs/1902.00304 (2019) - [i57]Álvaro Parra Bustos, Tat-Jun Chin, Frank Neumann, Tobias Friedrich, Maximilian Katzmann:
A Practical Maximum Clique Algorithm for Matching with Pairwise Constraints. CoRR abs/1902.01534 (2019) - [i56]Vahid Roostapour, Mojgan Pourhassan, Frank Neumann:
Analysis of Baseline Evolutionary Algorithms for the Packing While Travelling Problem. CoRR abs/1902.04692 (2019) - [i55]Yue Xie, Oscar Harper, Hirad Assimi, Aneta Neumann, Frank Neumann:
Evolutionary Algorithms for the Chance-Constrained Knapsack Problem. CoRR abs/1902.04767 (2019) - [i54]Mojgan Pourhassan, Vahid Roostapour, Frank Neumann:
Runtime Analysis of RLS and (1+1) EA for the Dynamic Weighted Vertex Cover Problem. CoRR abs/1903.02195 (2019) - [i53]Maryam Hasani-Shoreh, Maria Yaneli Ameca-Alducin, Wilson Blaikie, Frank Neumann, Marc Schoenauer:
On the Behaviour of Differential Evolution for Problems with Dynamic Linear Constraints. CoRR abs/1905.04099 (2019) - [i52]Maryam Hasani-Shoreh, Frank Neumann:
On the Use of Diversity Mechanisms in Dynamic Constrained Continuous Optimization. CoRR abs/1910.06062 (2019) - [i51]Vanja Doskoc, Tobias Friedrich, Andreas Göbel, Frank Neumann, Aneta Neumann, Francesco Quinzan:
Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings. CoRR abs/1911.06791 (2019) - [i50]Benjamin Doerr, Carola Doerr, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Optimization of Chance-Constrained Submodular Functions. CoRR abs/1911.11451 (2019) - [i49]Jakob Bossek, Pascal Kerschke, Aneta Neumann, Frank Neumann, Carola Doerr:
One-Shot Decision-Making with and without Surrogates. CoRR abs/1912.08956 (2019) - 2018
- [c135]Frank Neumann, Sergey Polyakovskiy, Martin Skutella, Leen Stougie, Junhua Wu:
A Fully Polynomial Time Approximation Scheme for Packing While Traveling. ALGOCLOUD 2018: 59-72 - [c134]Aneta Neumann, Frank Neumann:
On the Use of Colour-Based Segmentation in Evolutionary Image Composition. CEC 2018: 1-8 - [c133]Maria Yaneli Ameca-Alducin, Maryam Hasani-Shoreh, Wilson Blaikie, Frank Neumann, Efrén Mezura-Montes:
A Comparison of Constraint Handling Techniques for Dynamic Constrained Optimization Problems. CEC 2018: 1-8 - [c132]Tat-Jun Chin, Zhipeng Cai, Frank Neumann:
Robust Fitting in Computer Vision: Easy or Hard? ECCV (12) 2018: 715-730 - [c131]Maria Yaneli Ameca-Alducin, Maryam Hasani-Shoreh, Frank Neumann:
On the Use of Repair Methods in Differential Evolution for Dynamic Constrained Optimization. EvoApplications 2018: 832-847 - [c130]Wanru Gao, Tobias Friedrich, Frank Neumann, Christian Hercher:
Randomized greedy algorithms for covering problems. GECCO 2018: 309-315 - [c129]Junhua Wu, Sergey Polyakovskiy, Markus Wagner, Frank Neumann:
Evolutionary computation plus dynamic programming for the bi-objective travelling thief problem. GECCO 2018: 777-784 - [c128]Aneta Neumann, Frank Neumann:
Evolutionary computation for digital art. GECCO (Companion) 2018: 937-955 - [c127]Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neumann, Markus Wagner:
Discrepancy-based evolutionary diversity optimization. GECCO 2018: 991-998 - [c126]Feng Shi, Frank Neumann, Jianxin Wang:
Runtime analysis of randomized search heuristics for the dynamic weighted vertex cover problem. GECCO 2018: 1515-1522 - [c125]Behrooz Ghasemishabankareh, Melih Ozlen, Frank Neumann, Xiaodong Li:
A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems. PPSN (1) 2018: 69-81 - [c124]Frank Neumann, Andrew M. Sutton:
Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights. PPSN (2) 2018: 141-152 - [c123]Vahid Roostapour, Aneta Neumann, Frank Neumann:
On the Performance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Problem. PPSN (1) 2018: 158-169 - [i48]Junhua Wu, Sergey Polyakovskiy, Markus Wagner, Frank Neumann:
Evolutionary Computation plus Dynamic Programming for the Bi-Objective Travelling Thief Problem. CoRR abs/1802.02434 (2018) - [i47]Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neumann, Markus Wagner:
Discrepancy-based Evolutionary Diversity Optimization. CoRR abs/1802.05448 (2018) - [i46]Maria Yaneli Ameca-Alducin, Maryam Hasani-Shoreh, Wilson Blaikie, Frank Neumann, Efrén Mezura-Montes:
A Comparison of Constraint Handling Techniques for Dynamic Constrained Optimization Problems. CoRR abs/1802.05825 (2018) - [i45]Tat-Jun Chin, Zhipeng Cai, Frank Neumann:
Robust Fitting in Computer Vision: Easy or Hard? CoRR abs/1802.06464 (2018) - [i44]Edgar Covantes Osuna, Wanru Gao, Frank Neumann, Dirk Sudholt:
Design and Analysis of Diversity-Based Parent Selection Schemes for Speeding Up Evolutionary Multi-objective Optimisation. CoRR abs/1805.01221 (2018) - [i43]Vahid Roostapour, Mojgan Pourhassan, Frank Neumann:
Analysis of Evolutionary Algorithms in Dynamic and Stochastic Environments. CoRR abs/1806.08547 (2018) - [i42]Tobias Friedrich, Andreas Göbel, Frank Neumann, Francesco Quinzan, Ralf Rothenberger:
Greedy Maximization of Functions with Bounded Curvature under Partition Matroid Constraints. CoRR abs/1811.05351 (2018) - [i41]Aneta Neumann, Wanru Gao, Markus Wagner, Frank Neumann:
Evolutionary Diversity Optimization Using Multi-Objective Indicators. CoRR abs/1811.06804 (2018) - [i40]Vahid Roostapour, Aneta Neumann, Frank Neumann, Tobias Friedrich:
Pareto Optimization for Subset Selection with Dynamic Cost Constraints. CoRR abs/1811.07806 (2018) - [i39]Pascal Kerschke, Holger H. Hoos, Frank Neumann, Heike Trautmann:
Automated Algorithm Selection: Survey and Perspectives. CoRR abs/1811.11597 (2018) - 2017
- [j43]Benjamin Doerr, Frank Neumann, Andrew M. Sutton:
Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas. Algorithmica 78(2): 561-586 (2017) - [j42]Samadhi Nallaperuma, Frank Neumann, Dirk Sudholt:
Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem. Evol. Comput. 25(4) (2017) - [j41]Sergey Polyakovskiy, Frank Neumann:
The Packing While Traveling Problem. Eur. J. Oper. Res. 258(2): 424-439 (2017) - [j40]Mohammad Reza Bonyadi, Zbigniew Michalewicz, Samadhi Nallaperuma, Frank Neumann:
Ahura: A Heuristic-Based Racer for the Open Racing Car Simulator. IEEE Trans. Comput. Intell. AI Games 9(3): 290-304 (2017) - [c122]Tobias Friedrich, Frank Neumann:
What's Hot in Evolutionary Computation. AAAI 2017: 5064-5066 - [c121]Wanru Gao, Tobias Friedrich, Timo Kötzing, Frank Neumann:
Scaling up Local Search for Minimum Vertex Cover in Large Graphs by Parallel Kernelization. Australasian Conference on Artificial Intelligence 2017: 131-143 - [c120]Aneta Neumann, Bradley Alexander, Frank Neumann:
Evolutionary Image Transition Using Random Walks. EvoMUSART 2017: 230-245 - [c119]Mojgan Pourhassan, Tobias Friedrich, Frank Neumann:
On the Use of the Dual Formulation for Minimum Weighted Vertex Cover in Evolutionary Algorithms. FOGA 2017: 37-44 - [c118]Tobias Friedrich, Timo Kötzing, Gregor Lagodzinski, Frank Neumann, Martin Schirneck:
Analysis of the (1+1) EA on Subclasses of Linear Functions under Uniform and Linear Constraints. FOGA 2017: 45-54 - [c117]Edgar Covantes Osuna, Wanru Gao, Frank Neumann, Dirk Sudholt:
Speeding up evolutionary multi-objective optimisation through diversity-based parent selection. GECCO 2017: 553-560 - [c116]Aneta Neumann, Zygmunt L. Szpak, Wojciech Chojnacki, Frank Neumann:
Evolutionary image composition using feature covariance matrices. GECCO 2017: 817-824 - [c115]Feng Shi, Martin Schirneck, Tobias Friedrich, Timo Kötzing, Frank Neumann:
Reoptimization times of evolutionary algorithms on linear functions under dynamic uniform constraints. GECCO 2017: 1407-1414 - [c114]Junhua Wu, Markus Wagner, Sergey Polyakovskiy, Frank Neumann:
Exact Approaches for the Travelling Thief Problem. SEAL 2017: 110-121 - [c113]Frank Neumann:
Parameterized analysis of bio-inspired computing. SSCI 2017: 1-3 - [c112]Mojgan Pourhassan, Vahid Roostapour, Frank Neumann:
Improved runtime analysis of RLS and (1+1) EA for the dynamic vertex cover problem. SSCI 2017: 1-6 - [i38]Frank Neumann, Sergey Polyakovskiy, Martin Skutella, Leen Stougie, Junhua Wu:
A Fully Polynomial Time Approximation Scheme for Packing While Traveling. CoRR abs/1702.05217 (2017) - [i37]Aneta Neumann, Zygmunt L. Szpak, Wojciech Chojnacki, Frank Neumann:
Evolutionary Image Composition Using Feature Covariance Matrices. CoRR abs/1703.03773 (2017) - [i36]Junhua Wu, Markus Wagner, Sergey Polyakovskiy, Frank Neumann:
Exact Approaches for the Travelling Thief Problem. CoRR abs/1708.00331 (2017) - [i35]Aneta Neumann, Frank Neumann, Tobias Friedrich:
Quasi-random Agents for Image Transition and Animation. CoRR abs/1710.07421 (2017) - 2016
- [j39]Dogan Corus, Per Kristian Lehre, Frank Neumann, Mojgan Pourhassan:
A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms. Evol. Comput. 24(1): 183-203 (2016) - [j38]Sergey Polyakovskiy, Rudolf Berghammer, Frank Neumann:
Solving hard control problems in voting systems via integer programming. Eur. J. Oper. Res. 250(1): 204-213 (2016) - [c111]Frank Neumann, Shayan Poursoltan:
Feature-based algorithm selection for constrained continuous optimisation. CEC 2016: 1461-1468 - [c110]Tat-Jun Chin, Yang Heng Kee, Anders P. Eriksson, Frank Neumann:
Guaranteed Outlier Removal with Mixed Integer Linear Programs. CVPR 2016: 5858-5866 - [c109]Junhua Wu, Sergey Polyakovskiy, Frank Neumann:
On the Impact of the Renting Rate for the Unconstrained Nonlinear Knapsack Problem. GECCO 2016: 413-419 - [c108]Benjamin Doerr, Wanru Gao, Frank Neumann:
Runtime Analysis of Evolutionary Diversity Maximization for OneMinMax. GECCO 2016: 557-564 - [c107]Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma, Frank Neumann, Martin Schirneck:
Fast Building Block Assembly by Majority Vote Crossover. GECCO 2016: 661-668 - [c106]Junhua Wu, Slava Shekh, Nataliia Y. Sergiienko, Benjamin S. Cazzolato, Boyin Ding, Frank Neumann, Markus Wagner:
Fast and Effective Optimisation of Arrays of Submerged Wave Energy Converters. GECCO 2016: 1045-1052 - [c105]Aneta Neumann, Bradley Alexander, Frank Neumann:
The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. ICONIP (3) 2016: 261-268 - [c104]Mojgan Pourhassan, Feng Shi, Frank Neumann:
Parameterized Analysis of Multi-objective Evolutionary Algorithms and the Weighted Vertex Cover Problem. PPSN 2016: 729-739 - [c103]Wanru Gao, Tobias Friedrich, Frank Neumann:
Fixed-Parameter Single Objective Search Heuristics for Minimum Vertex Cover. PPSN 2016: 740-750 - [c102]Wanru Gao, Samadhi Nallaperuma, Frank Neumann:
Feature-Based Diversity Optimization for Problem Instance Classification. PPSN 2016: 869-879 - [e3]Tobias Friedrich, Frank Neumann, Andrew M. Sutton:
Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016. ACM 2016, ISBN 978-1-4503-4206-3 [contents] - [e2]Tobias Friedrich, Frank Neumann, Andrew M. Sutton:
Genetic and Evolutionary Computation Conference, GECCO 2016, Denver, CO, USA, July 20-24, 2016, Companion Material Proceedings. ACM 2016, ISBN 978-1-4503-4323-7 [contents] - [i34]Shayan Poursoltan, Frank Neumann:
A Feature-Based Prediction Model of Algorithm Selection for Constrained Continuous Optimisation. CoRR abs/1602.02862 (2016) - [i33]Mojgan Pourhassan, Feng Shi, Frank Neumann:
Parameterized Analysis of Multi-objective Evolutionary Algorithms and the Weighted Vertex Cover Problem. CoRR abs/1604.01495 (2016) - [i32]Aneta Neumann, Bradley Alexander, Frank Neumann:
Evolutionary Image Transition Based on Theoretical Insights of Random Processes. CoRR abs/1604.06187 (2016) - [i31]Mohammad Reza Bonyadi, Zbigniew Michalewicz, Frank Neumann, Markus Wagner:
Evolutionary computation for multicomponent problems: opportunities and future directions. CoRR abs/1606.06818 (2016) - [i30]Aneta Neumann, Bradley Alexander, Frank Neumann:
The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. CoRR abs/1608.01783 (2016) - [i29]Holger H. Hoos, Frank Neumann, Heike Trautmann:
Automated Algorithm Selection and Configuration (Dagstuhl Seminar 16412). Dagstuhl Reports 6(10): 33-74 (2016) - 2015
- [j37]Tobias Friedrich, Frank Neumann, Christian Thyssen:
Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point. Evol. Comput. 23(1): 131-159 (2015) - [j36]Tobias Friedrich, Frank Neumann:
Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms. Evol. Comput. 23(4): 543-558 (2015) - [j35]Markus Wagner, Frank Neumann, Tommaso Urli:
On the Performance of Different Genetic Programming Approaches for the SORTING Problem. Evol. Comput. 23(4): 583-609 (2015) - [j34]Markus Wagner, Karl Bringmann, Tobias Friedrich, Frank Neumann:
Efficient optimization of many objectives by approximation-guided evolution. Eur. J. Oper. Res. 243(2): 465-479 (2015) - [j33]Samadhi Nallaperuma, Markus Wagner, Frank Neumann:
Analyzing the Effects of Instance Features and Algorithm Parameters for Max-Min Ant System and the Traveling Salesperson Problem. Frontiers Robotics AI 2: 18 (2015) - [j32]Anh Quang Nguyen, Andrew M. Sutton, Frank Neumann:
Population size matters: Rigorous runtime results for maximizing the hypervolume indicator. Theor. Comput. Sci. 561: 24-36 (2015) - [c101]Sergey Polyakovskiy, Frank Neumann:
Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems. CPAIOR 2015: 332-346 - [c100]Frank Neumann, Andrew M. Sutton:
Parameterized Complexity Analysis of Evolutionary Algorithms. GECCO (Companion) 2015: 435-450 - [c99]Mojgan Pourhassan, Frank Neumann:
On the Impact of Local Search Operators and Variable Neighbourhood Search for the Generalized Travelling Salesperson Problem. GECCO 2015: 465-472 - [c98]Mojgan Pourhassan, Wanru Gao, Frank Neumann:
Maintaining 2-Approximations for the Dynamic Vertex Cover Problem Using Evolutionary Algorithms. GECCO 2015: 903-910 - [c97]Wanru Gao, Mojgan Pourhassan, Frank Neumann:
Runtime Analysis of Evolutionary Diversity Optimization and the Vertex Cover Problem. GECCO (Companion) 2015: 1395-1396 - [c96]Benjamin Doerr, Frank Neumann, Andrew M. Sutton:
Improved Runtime Bounds for the (1+1) EA on Random 3-CNF Formulas Based on Fitness-Distance Correlation. GECCO 2015: 1415-1422 - [c95]Shayan Poursoltan, Frank Neumann:
A Feature-Based Comparison of Evolutionary Computing Techniques for Constrained Continuous Optimisation. ICONIP (3) 2015: 332-343 - [c94]Shayan Poursoltan, Frank Neumann:
A Feature-Based Analysis on the Impact of Set of Constraints for \varepsilon -Constrained Differential Evolution. ICONIP (3) 2015: 344-355 - [c93]Frank Neumann, Carsten Witt:
On the Runtime of Randomized Local Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling. IJCAI 2015: 3742-3748 - [i28]Frank Neumann, Carsten Witt:
On the Runtime of Randomized Local Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling. CoRR abs/1504.06363 (2015) - [i27]Laurent Hoeltgen, Markus Mainberger, Sebastian Hoffmann, Joachim Weickert, Ching Hoo Tang, Simon Setzer, Daniel Johannsen, Frank Neumann, Benjamin Doerr:
Optimising Spatial and Tonal Data for PDE-based Inpainting. CoRR abs/1506.04566 (2015) - [i26]Shayan Poursoltan, Frank Neumann:
A Feature-Based Analysis on the Impact of Set of Constraints for e-Constrained Differential Evolution. CoRR abs/1506.06848 (2015) - [i25]Shayan Poursoltan, Frank Neumann:
A Feature-Based Comparison of Evolutionary Computing Techniques for Constrained Continuous Optimisation. CoRR abs/1509.06842 (2015) - [i24]Wanru Gao, Samadhi Nallaperuma, Frank Neumann:
Feature-Based Diversity Optimization for Problem Instance Classification. CoRR abs/1510.08568 (2015) - [i23]Sergey Polyakovskiy, Frank Neumann:
The Packing While Traveling Problem. CoRR abs/1512.08831 (2015) - 2014
- [j31]Andrew M. Sutton, Frank Neumann, Samadhi Nallaperuma:
Parameterized Runtime Analyses of Evolutionary Algorithms for the Planar Euclidean Traveling Salesperson Problem. Evol. Comput. 22(4): 595-628 (2014) - [j30]Timo Kötzing, Andrew M. Sutton, Frank Neumann, Una-May O'Reilly:
The Max problem revisited: The importance of mutation in genetic programming. Theor. Comput. Sci. 545: 94-107 (2014) - [j29]Frank Neumann, Benjamin Doerr, Per Kristian Lehre, Pauline C. Haddow:
Editorial for the Special Issue on Theoretical Foundations of Evolutionary Computation. IEEE Trans. Evol. Comput. 18(5): 625-627 (2014) - [c92]Markus Wagner, Frank Neumann:
Single- and multi-objective genetic programming: New runtime results for sorting. IEEE Congress on Evolutionary Computation 2014: 125-132 - [c91]Shayan Poursoltan, Frank Neumann:
A Feature-based analysis on the impact of linear constraints for ε-constrained differential evolution. IEEE Congress on Evolutionary Computation 2014: 3088-3095 - [c90]Samadhi Nallaperuma, Frank Neumann, Mohammad Reza Bonyadi, Zbigniew Michalewicz:
EVOR: an online evolutionary algorithm for car racing games. GECCO 2014: 317-324 - [c89]Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew Michalewicz, Frank Neumann:
A comprehensive benchmark set and heuristics for the traveling thief problem. GECCO 2014: 477-484 - [c88]Frank Neumann, Andrew M. Sutton:
Parameterized complexity analysis of evolutionary algorithms. GECCO (Companion) 2014: 607-622 - [c87]Wanru Gao, Frank Neumann:
Runtime analysis for maximizing population diversity in single-objective optimization. GECCO 2014: 777-784 - [c86]Samadhi Nallaperuma, Frank Neumann, Dirk Sudholt:
A fixed budget analysis of randomized search heuristics for the traveling salesperson problem. GECCO 2014: 807-814 - [c85]Samadhi Nallaperuma, Markus Wagner, Frank Neumann:
Parameter Prediction Based on Features of Evolved Instances for Ant Colony Optimization and the Traveling Salesperson Problem. PPSN 2014: 100-109 - [c84]Tobias Friedrich, Frank Neumann:
Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms. PPSN 2014: 922-931 - [c83]Andrew M. Sutton, Frank Neumann:
Runtime Analysis of Evolutionary Algorithms on Randomly Constructed High-Density Satisfiable 3-CNF Formulas. PPSN 2014: 942-951 - [c82]Anh Quang Nguyen, Markus Wagner, Frank Neumann:
User Preferences for Approximation-Guided Multi-objective Evolution. SEAL 2014: 251-262 - [c81]Frank Neumann, Anh Quang Nguyen:
On the Impact of Utility Functions in Interactive Evolutionary Multi-objective Optimization. SEAL 2014: 419-430 - [i22]Dogan Corus, Per Kristian Lehre, Frank Neumann, Mojgan Pourhassan:
A Parameterized Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms. CoRR abs/1401.1905 (2014) - [i21]Sergey Polyakovskiy, Rudolf Berghammer, Frank Neumann:
Solving Hard Control Problems in Voting Systems via Integer Programming. CoRR abs/1408.5987 (2014) - [i20]Sergey Polyakovskiy, Frank Neumann:
Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems. CoRR abs/1411.5768 (2014) - [i19]Hong Mei, Frank Neumann, Xin Yao, Leandro L. Minku:
Computational Intelligence for Software Engineering (NII Shonan Meeting 2014-13). NII Shonan Meet. Rep. 2014 (2014) - 2013
- [j28]Stefan Kratsch, Frank Neumann:
Fixed-Parameter Evolutionary Algorithms and the Vertex Cover Problem. Algorithmica 65(4): 754-771 (2013) - [j27]Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob Bossek, Frank Neumann:
A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann. Math. Artif. Intell. 69(2): 151-182 (2013) - [j26]Tobias Friedrich, Trent Kroeger, Frank Neumann:
Weighted preferences in evolutionary multi-objective optimization. Int. J. Mach. Learn. Cybern. 4(2): 139-148 (2013) - [j25]Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, Madeleine Theile:
More effective crossover operators for the all-pairs shortest path problem. Theor. Comput. Sci. 471: 12-26 (2013) - [c80]Samadhi Nallaperuma, Andrew M. Sutton, Frank Neumann:
Fixed-parameter evolutionary algorithms for the Euclidean Traveling Salesperson problem. IEEE Congress on Evolutionary Computation 2013: 2037-2044 - [c79]Samadhi Nallaperuma, Andrew M. Sutton, Frank Neumann:
Parameterized complexity analysis and more effective construction methods for ACO algorithms and the euclidean traveling salesperson problem. IEEE Congress on Evolutionary Computation 2013: 2045-2052 - [c78]Samadhi Nallaperuma, Markus Wagner, Frank Neumann, Bernd Bischl, Olaf Mersmann, Heike Trautmann:
A feature-based comparison of local search and the christofides algorithm for the travelling salesperson problem. FOGA 2013: 147-160 - [c77]Samadhi Nallaperuma, Markus Wagner, Frank Neumann:
Ant colony optimisation and the traveling salesperson problem: hardness, features and parameter settings. GECCO (Companion) 2013: 13-14 - [c76]Dogan Corus, Per Kristian Lehre, Frank Neumann:
The generalized minimum spanning tree problem: a parameterized complexity analysis of bi-level optimisation. GECCO 2013: 519-526 - [c75]Frank Neumann, Carsten Witt:
Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. GECCO (Companion) 2013: 567-590 - [c74]Markus Wagner, Frank Neumann:
A fast approximation-guided evolutionary multi-objective algorithm. GECCO 2013: 687-694 - [c73]Raymond Tran, Junhua Wu, Christopher Denison, Thomas Ackling, Markus Wagner, Frank Neumann:
Fast and effective multi-objective optimisation of wind turbine placement. GECCO 2013: 1381-1388 - [c72]Anh Quang Nguyen, Andrew M. Sutton, Frank Neumann:
Population size matters: rigorous runtime results for maximizing the hypervolume indicator. GECCO 2013: 1613-1620 - [e1]Frank Neumann, Kenneth A. De Jong:
Foundations of Genetic Algorithms XII, FOGA '13, Adelaide, SA, Australia, January 16-20, 2013. ACM 2013, ISBN 978-1-4503-1990-4 [contents] - [i18]Benjamin Doerr, Anton V. Eremeev, Frank Neumann, Madeleine Theile, Christian Thyssen:
Evolutionary Algorithms and Dynamic Programming. CoRR abs/1301.4096 (2013) - [i17]Tobias Friedrich, Frank Neumann, Christian Thyssen:
Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point. CoRR abs/1309.3816 (2013) - 2012
- [j24]Timo Kötzing, Frank Neumann, Heiko Röglin, Carsten Witt:
Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intell. 6(1): 1-21 (2012) - [j23]Per Kristian Lehre, Frank Neumann, Jonathan E. Rowe, Xin Yao:
Editorial to the special issue on "Theoretical Foundations of Evolutionary Computation". Theor. Comput. Sci. 425: 2-3 (2012) - [j22]Rudolf Berghammer, Tobias Friedrich, Frank Neumann:
Convergence of set-based multi-objective optimization, indicators and deteriorative cycles. Theor. Comput. Sci. 456: 2-17 (2012) - [c71]Andrew M. Sutton, Frank Neumann:
A Parameterized Runtime Analysis of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem. AAAI 2012: 1105-1111 - [c70]Kalyan Veeramachaneni, Markus Wagner, Una-May O'Reilly, Frank Neumann:
Optimizing energy output and layout costs for large wind farms using particle swarm optimization. IEEE Congress on Evolutionary Computation 2012: 1-7 - [c69]Joseph Yuen, Sophia Gao, Markus Wagner, Frank Neumann:
An adaptive data structure for evolutionary multi-objective algorithms with unbounded archives. IEEE Congress on Evolutionary Computation 2012: 1-8 - [c68]Andrew M. Sutton, Jareth Day, Frank Neumann:
A parameterized runtime analysis of evolutionary algorithms for MAX-2-SAT. GECCO 2012: 433-440 - [c67]Frank Neumann:
Computational complexity analysis of multi-objective genetic programming. GECCO 2012: 799-806 - [c66]Frank Neumann, Carsten Witt:
Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. GECCO (Companion) 2012: 1035-1058 - [c65]Timo Kötzing, Andrew M. Sutton, Frank Neumann, Una-May O'Reilly:
The max problem revisited: the importance of mutation in genetic programming. GECCO 2012: 1333-1340 - [c64]Olaf Mersmann, Bernd Bischl, Jakob Bossek, Heike Trautmann, Markus Wagner, Frank Neumann:
Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness. LION 2012: 115-129 - [c63]Andrew M. Sutton, Frank Neumann:
A Parameterized Runtime Analysis of Simple Evolutionary Algorithms for Makespan Scheduling. PPSN (1) 2012: 52-61 - [c62]Tommaso Urli, Markus Wagner, Frank Neumann:
Experimental Supplements to the Computational Complexity Analysis of Genetic Programming for Problems Modelling Isolated Program Semantics. PPSN (1) 2012: 102-112 - [c61]Markus Wagner, Frank Neumann:
Parsimony Pressure versus Multi-objective Optimization for Variable Length Representations. PPSN (1) 2012: 133-142 - [i16]Frank Neumann:
Computational Complexity Analysis of Multi-Objective Genetic Programming. CoRR abs/1203.4881 (2012) - [i15]Markus Wagner, Jareth Day, Frank Neumann:
A Fast and Effective Local Search Algorithm for Optimizing the Placement of Wind Turbines. CoRR abs/1204.4560 (2012) - [i14]Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, Madeleine Theile:
More Effective Crossover Operators for the All-Pairs Shortest Path Problem. CoRR abs/1207.0369 (2012) - [i13]Andrew M. Sutton, Frank Neumann:
A Parameterized Runtime Analysis of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem. CoRR abs/1207.0578 (2012) - [i12]Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Frank Neumann:
A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem. CoRR abs/1208.2318 (2012) - 2011
- [j21]Frank Neumann, Joachim Reichel, Martin Skutella:
Computing Minimum Cuts by Randomized Search Heuristics. Algorithmica 59(3): 323-342 (2011) - [j20]Tobias Friedrich, Christian Horoba, Frank Neumann:
Illustration of fairness in evolutionary multi-objective optimization. Theor. Comput. Sci. 412(17): 1546-1556 (2011) - [j19]Benjamin Doerr, Frank Neumann, Dirk Sudholt, Carsten Witt:
Runtime analysis of the 1-ANT ant colony optimizer. Theor. Comput. Sci. 412(17): 1629-1644 (2011) - [j18]Benjamin Doerr, Anton V. Eremeev, Frank Neumann, Madeleine Theile, Christian Thyssen:
Evolutionary algorithms and dynamic programming. Theor. Comput. Sci. 412(43): 6020-6035 (2011) - [c60]Tobias Friedrich, Trent Kroeger, Frank Neumann:
Weighted Preferences in Evolutionary Multi-objective Optimization. Australasian Conference on Artificial Intelligence 2011: 291-300 - [c59]Greg Durrett, Frank Neumann, Una-May O'Reilly:
Computational complexity analysis of simple genetic programming on two problems modeling isolated program semantics. FOGA 2011: 69-80 - [c58]Timo Kötzing, Frank Neumann, Dirk Sudholt, Markus Wagner:
Simple max-min ant systems and the optimization of linear pseudo-boolean functions. FOGA 2011: 209-218 - [c57]Thomas Jansen, Frank Neumann:
Computational complexity and evolutionary computation. GECCO (Companion) 2011: 1053-1080 - [c56]Tobias Friedrich, Frank Neumann:
Foundations of evolutionary multi-objective optimization. GECCO (Companion) 2011: 1213-1232 - [c55]Frank Neumann, Pietro S. Oliveto, Günter Rudolph, Dirk Sudholt:
On the effectiveness of crossover for migration in parallel evolutionary algorithms. GECCO 2011: 1587-1594 - [c54]Timo Kötzing, Frank Neumann, Reto Spöhel:
PAC learning and genetic programming. GECCO 2011: 2091-2096 - [c53]Karl Bringmann, Tobias Friedrich, Frank Neumann, Markus Wagner:
Approximation-Guided Evolutionary Multi-Objective Optimization. IJCAI 2011: 1198-1203 - [c52]Markus Mainberger, Sebastian Hoffmann, Joachim Weickert, Ching Hoo Tang, Daniel Johannsen, Frank Neumann, Benjamin Doerr:
Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting. SSVM 2011: 26-37 - [i11]Markus Wagner, Frank Neumann:
Computational Complexity Results for Genetic Programming and the Sorting Problem. CoRR abs/1103.5797 (2011) - [i10]Markus Wagner, Jareth Day, Claire Diora Jordan, Trent Kroeger, Frank Neumann:
Evolving Pacing Strategies for Team Pursuit Track Cycling. CoRR abs/1104.0775 (2011) - [i9]Katya Vladislavleva, Tobias Friedrich, Frank Neumann, Markus Wagner:
Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation. CoRR abs/1109.1922 (2011) - 2010
- [b2]Frank Neumann, Carsten Witt:
Bioinspired Computation in Combinatorial Optimization. Natural Computing Series, Springer 2010, ISBN 978-3-642-16543-6, pp. 1-203 - [j17]Benjamin Doerr, Frank Neumann, Ingo Wegener:
Editorial. Algorithmica 57(1): 119-120 (2010) - [j16]Benjamin Doerr, Frank Neumann:
In Memoriam: Ingo Wegener. Algorithmica 58(3): 541-542 (2010) - [j15]Thomas Jansen, Frank Neumann:
Editorial for the Special Issue on Theoretical Aspects of Evolutionary Multi-Objective Optimization. Evol. Comput. 18(3): 333-334 (2010) - [j14]Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, Carsten Witt:
Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models. Evol. Comput. 18(4): 617-633 (2010) - [j13]Tobias Friedrich, Frank Neumann:
When to use bit-wise neutrality. Nat. Comput. 9(1): 283-294 (2010) - [j12]Tobias Friedrich, Nils Hebbinghaus, Frank Neumann:
Plateaus can be harder in multi-objective optimization. Theor. Comput. Sci. 411(6): 854-864 (2010) - [j11]Frank Neumann, Carsten Witt:
Ant Colony Optimization and the minimum spanning tree problem. Theor. Comput. Sci. 411(25): 2406-2413 (2010) - [c51]Timo Kötzing, Frank Neumann, Heiko Röglin, Carsten Witt:
Theoretical Properties of Two ACO Approaches for the Traveling Salesman Problem. ANTS Conference 2010: 324-335 - [c50]Frank Neumann, Dirk Sudholt, Carsten Witt:
A few ants are enough: ACO with iteration-best update. GECCO 2010: 63-70 - [c49]Rudolf Berghammer, Tobias Friedrich, Frank Neumann:
Set-based multi-objective optimization, indicators, and deteriorative cycles. GECCO 2010: 495-502 - [c48]Timo Kötzing, Per Kristian Lehre, Frank Neumann, Pietro S. Oliveto:
Ant colony optimization and the minimum cut problem. GECCO 2010: 1393-1400 - [c47]Tobias Friedrich, Frank Neumann:
Foundations of evolutionary multi-objective optimization. GECCO (Companion) 2010: 2557-2576 - [c46]Thomas Jansen, Frank Neumann:
Computational complexity and evolutionary computation. GECCO (Companion) 2010: 2683-2710 - [c45]Süntje Böttcher, Benjamin Doerr, Frank Neumann:
Optimal Fixed and Adaptive Mutation Rates for the LeadingOnes Problem. PPSN (1) 2010: 1-10 - [c44]Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, Madeleine Theile:
More Effective Crossover Operators for the All-Pairs Shortest Path Problem. PPSN (1) 2010: 184-193 - [c43]Stefan Kratsch, Per Kristian Lehre, Frank Neumann, Pietro Simone Oliveto:
Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutation. PPSN (1) 2010: 204-213 - [c42]Frank Neumann, Madeleine Theile:
How Crossover Speeds Up Evolutionary Algorithms for the Multi-criteria All-Pairs-Shortest-Path Problem. PPSN (1) 2010: 667-676 - [c41]Adam Ghandar, Zbigniew Michalewicz, Frank Neumann:
Evolving Fuzzy Rules: Evaluation of a New Approach. SEAL 2010: 250-259 - [p3]Christian Horoba, Frank Neumann:
Approximating Pareto-Optimal Sets Using Diversity Strategies in Evolutionary Multi-Objective Optimization. Advances in Multi-Objective Nature Inspired Computing 2010: 23-44 - [i8]Greg Durrett, Frank Neumann, Una-May O'Reilly:
Computational Complexity Analysis of Simple Genetic Programming On Two Problems Modeling Isolated Program Semantics. CoRR abs/1007.4636 (2010) - [i7]Timo Kötzing, Frank Neumann, Dirk Sudholt, Markus Wagner:
Simple Max-Min Ant Systems and the Optimization of Linear Pseudo-Boolean Functions. CoRR abs/1007.4707 (2010)
2000 – 2009
- 2009
- [j10]Frank Neumann, Carsten Witt:
Runtime Analysis of a Simple Ant Colony Optimization Algorithm. Algorithmica 54(2): 243-255 (2009) - [j9]Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, Carsten Witt:
Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem. Evol. Comput. 17(1): 3-19 (2009) - [j8]Frank Neumann, Dirk Sudholt, Carsten Witt:
Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intell. 3(1): 35-68 (2009) - [j7]Tobias Friedrich, Nils Hebbinghaus, Frank Neumann:
Comparison of simple diversity mechanisms on plateau functions. Theor. Comput. Sci. 410(26): 2455-2462 (2009) - [j6]Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein, Frank Neumann, Eckart Zitzler:
On the Effects of Adding Objectives to Plateau Functions. IEEE Trans. Evol. Comput. 13(3): 591-603 (2009) - [c40]Pietro S. Oliveto, Per Kristian Lehre, Frank Neumann:
Theoretical analysis of rank-based mutation - combining exploration and exploitation. IEEE Congress on Evolutionary Computation 2009: 1455-1462 - [c39]Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Kurur, Frank Neumann:
Computing single source shortest paths using single-objective fitness. FOGA 2009: 59-66 - [c38]Christian Horoba, Frank Neumann:
Additive approximations of pareto-optimal sets by evolutionary multi-objective algorithms. FOGA 2009: 79-86 - [c37]Stefan Kratsch, Frank Neumann:
Fixed-parameter evolutionary algorithms and the vertex cover problem. GECCO 2009: 293-300 - [c36]Tobias Friedrich, Christian Horoba, Frank Neumann:
Multiplicative approximations and the hypervolume indicator. GECCO 2009: 571-578 - [c35]Benjamin Doerr, Anton V. Eremeev, Christian Horoba, Frank Neumann, Madeleine Theile:
Evolutionary algorithms and dynamic programming. GECCO 2009: 771-778 - [c34]Frank Neumann, Pietro S. Oliveto, Carsten Witt:
Theoretical analysis of fitness-proportional selection: landscapes and efficiency. GECCO 2009: 835-842 - [c33]Thomas Jansen, Frank Neumann:
Computational complexity and evolutionary computation. GECCO (Companion) 2009: 3157-3184 - [p2]Frank Neumann, Dirk Sudholt, Carsten Witt:
Computational Complexity of Ant Colony Optimization and Its Hybridization with Local Search. Innovations in Swarm Intelligence 2009: 91-120 - 2008
- [j5]Frank Neumann:
Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Comput. Oper. Res. 35(9): 2750-2759 (2008) - [c32]Florian Diedrich, Britta Kehden, Frank Neumann:
Multi-objective Problems in Terms of Relational Algebra. RelMiCS 2008: 84-98 - [c31]Frank Neumann, Dirk Sudholt, Carsten Witt:
Rigorous Analyses for the Combination of Ant Colony Optimization and Local Search. ANTS Conference 2008: 132-143 - [c30]Tobias Friedrich, Frank Neumann:
When to use bit-wise neutrality. IEEE Congress on Evolutionary Computation 2008: 997-1003 - [c29]Florian Diedrich, Frank Neumann:
Using fast matrix multiplication in bio-inspired computation for complex optimization problems. IEEE Congress on Evolutionary Computation 2008: 3827-3832 - [c28]Christian Horoba, Frank Neumann:
Benefits and drawbacks for the use of epsilon-dominance in evolutionary multi-objective optimization. GECCO 2008: 641-648 - [c27]Frank Neumann, Joachim Reichel, Martin Skutella:
Computing minimum cuts by randomized search heuristics. GECCO 2008: 779-786 - [c26]Edda Happ, Daniel Johannsen, Christian Klein, Frank Neumann:
Rigorous analyses of fitness-proportional selection for optimizing linear functions. GECCO 2008: 953-960 - [c25]Thomas Jansen, Frank Neumann:
Computational complexity and evolutionary computation. GECCO (Companion) 2008: 2417-2444 - [c24]Frank Neumann, Joachim Reichel:
Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms. PPSN 2008: 72-81 - [c23]Dimo Brockhoff, Tobias Friedrich, Frank Neumann:
Analyzing Hypervolume Indicator Based Algorithms. PPSN 2008: 651-660 - [c22]Tobias Friedrich, Christian Horoba, Frank Neumann:
Runtime Analyses for Using Fairness in Evolutionary Multi-Objective Optimization. PPSN 2008: 671-680 - [c21]Jens Kroeske, Adam Ghandar, Zbigniew Michalewicz, Frank Neumann:
Learning Fuzzy Rules with Evolutionary Algorithms - An Analytic Approach. PPSN 2008: 1051-1060 - [p1]Frank Neumann, Ingo Wegener:
Can Single-Objective Optimization Profit from Multiobjective Optimization? Multiobjective Problem Solving from Nature 2008: 115-130 - 2007
- [j4]Benjamin Doerr, Nils Hebbinghaus, Frank Neumann:
Speeding Up Evolutionary Algorithms through Asymmetric Mutation Operators. Evol. Comput. 15(4): 401-410 (2007) - [j3]Frank Neumann:
Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. Eur. J. Oper. Res. 181(3): 1620-1629 (2007) - [j2]Frank Neumann, Ingo Wegener:
Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1): 32-40 (2007) - [c20]Benjamin Doerr, Michael Gnewuch, Nils Hebbinghaus, Frank Neumann:
A rigorous view on neutrality. IEEE Congress on Evolutionary Computation 2007: 2591-2597 - [c19]Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, Carsten Witt:
On improving approximate solutions by evolutionary algorithms. IEEE Congress on Evolutionary Computation 2007: 2614-2621 - [c18]Tobias Friedrich, Nils Hebbinghaus, Frank Neumann:
Plateaus can be harder in multi-objective optimization. IEEE Congress on Evolutionary Computation 2007: 2622-2629 - [c17]Benjamin Doerr, Frank Neumann, Dirk Sudholt, Carsten Witt:
On the runtime analysis of the 1-ANT ACO algorithm. GECCO 2007: 33-40 - [c16]Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein, Frank Neumann, Eckart Zitzler:
Do additional objectives make a problem harder? GECCO 2007: 765-772 - [c15]Tobias Friedrich, Nils Hebbinghaus, Frank Neumann, Jun He, Carsten Witt:
Approximating covering problems by randomized search heuristics using multi-objective models. GECCO 2007: 797-804 - [c14]Tobias Friedrich, Nils Hebbinghaus, Frank Neumann:
Rigorous analyses of simple diversity mechanisms. GECCO 2007: 1219-1225 - [c13]Thomas Jansen, Frank Neumann:
Computational complexity and evolutionary computation. GECCO (Companion) 2007: 3225-3250 - [c12]Frank Neumann, Carsten Witt:
Ant Colony Optimization and the Minimum Spanning Tree Problem. LION 2007: 153-166 - [c11]Frank Neumann, Dirk Sudholt, Carsten Witt:
Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean Functions. SLS 2007: 61-75 - [i6]Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, Carsten Witt:
Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models. Electron. Colloquium Comput. Complex. TR07 (2007) - 2006
- [j1]Frank Neumann, Ingo Wegener:
Minimum spanning trees made easier via multi-objective optimization. Nat. Comput. 5(3): 305-319 (2006) - [c10]Britta Kehden, Frank Neumann:
A Relation-Algebraic View on Evolutionary Algorithms for Some Graph Problems. EvoCOP 2006: 147-158 - [c9]Frank Neumann, Carsten Witt:
Runtime Analysis of a Simple Ant Colony Optimization Algorithm. ISAAC 2006: 618-627 - [c8]Frank Neumann, Marco Laumanns:
Speeding up Approximation Algorithms for NP-Hard Spanning Forest Problems by Multi-objective Optimization. LATIN 2006: 745-756 - [c7]Benjamin Doerr, Nils Hebbinghaus, Frank Neumann:
Speeding Up Evolutionary Algorithms Through Restricted Mutation Operators. PPSN 2006: 978-987 - [i5]Frank Neumann, Carsten Witt:
Runtime Analysis of a Simple Ant Colony Optimization Algorithm. Theory of Evolutionary Algorithms 2006 - [i4]Nils Hebbinghaus, Benjamin Doerr, Frank Neumann:
Speeding up Evolutionary Algorithms by Restricted Mutation Operators. Electron. Colloquium Comput. Complex. TR06 (2006) - [i3]Frank Neumann, Carsten Witt:
Runtime Analysis of a Simple Ant Colony Optimization Algorithm. Electron. Colloquium Comput. Complex. TR06 (2006) - [i2]Frank Neumann, Carsten Witt:
Ant Colony Optimization and the Minimum Spanning Tree Problem. Electron. Colloquium Comput. Complex. TR06 (2006) - 2005
- [b1]Frank Neumann:
Combinatorial optimization and the analysis of randomized search heuristics. University of Kiel, Germany, 2005, pp. 1-143 - [c6]Britta Kehden, Frank Neumann, Rudolf Berghammer:
Relational Implementation of Simple Parallel Evolutionary Algorithms. RelMiCS 2005: 161-172 - [c5]Rudolf Berghammer, Frank Neumann:
RelView - An OBDD-Based Computer Algebra System for Relations. CASC 2005: 40-51 - [c4]Frank Neumann, Ingo Wegener:
Minimum spanning trees made easier via multi-objective optimization. GECCO 2005: 763-769 - [i1]Frank Neumann, Marco Laumanns:
Speeding Up Approximation Algorithms for NP-hard Spanning Forest Problems by Multi-objective Optimization. Electron. Colloquium Comput. Complex. TR05 (2005) - 2004
- [c3]Frank Neumann:
Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. IEEE Congress on Evolutionary Computation 2004: 904-910 - [c2]Frank Neumann, Ingo Wegener:
Randomized Local Search, Evolutionary Algorithms, and the Minimum Spanning Tree Problem. GECCO (1) 2004: 713-724 - [c1]Frank Neumann:
Expected Runtimes of a Simple Evolutionary Algorithm for the Multi-objective Minimum Spanning Tree Problem. PPSN 2004: 81-90
Coauthor Index
aka: Christian Horoba
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 20:42 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint