default search action
7th NetSci-X 2022: Porto, Portugal
- Pedro Ribeiro, Fernando Silva, José Fernando Ferreira Mendes, Rosário D. Laureano:
Network Science - 7th International Winter Conference, NetSci-X 2022, Porto, Portugal, February 8-11, 2022, Proceedings. Lecture Notes in Computer Science 13197, Springer 2022, ISBN 978-3-030-97239-4 - Ivana Bachmann, Javier Bustos-Jiménez:
Using Localized Attacks with Probabilistic Failures to Model Seismic Events over Physical-Logical Interdependent Networks. 1-14 - Elie Alhajjar, Ross Friar:
A Historical Perspective on International Treaties via Hypernetwork Science. 15-25 - Daniel Ferguson, François G. Meyer:
On the Number of Edges of the Fréchet Mean and Median Graphs. 26-40 - Sofia Dokuka, Elizaveta Sivak, Ivan Smirnov:
Core But Not Peripheral Online Social Ties is a Protective Factor Against Depression: Evidence from a Nationally Representative Sample of Young Adults. 41-53 - Leonardo F. S. Scabini, Lucas Correia Ribas, Eraldo Ribeiro, Odemir M. Bruno:
Deep Topological Embedding with Convolutional Neural Networks for Complex Network Classification. 54-66 - Stephany Rajeh, Marinette Savonnet, Éric Leclercq, Hocine Cherifi:
Modularity-Based Backbone Extraction in Weighted Complex Networks. 67-79 - Racha Gouareb, Francois Can, Sohrab Ferdowsi, Douglas Teodoro:
Vessel Destination Prediction Using a Graph-Based Machine Learning Model. 80-93 - Moein Khajehnejad, Forough Habibollahi:
Hunting for Dual-Target Set on a Class of Hierarchical Networks. 94-111 - Mirko Armillotta, Konstantinos Fokianos, Ioannis Krikidis:
Generalized Linear Models Network Autoregression. 112-125 - Rouzbeh Hasheminezhad, Ulrik Brandes:
Constructing Provably Robust Scale-Free Networks. 126-139 - Paulo Dias, Pedro T. Monteiro, Andreia Sofia Teixeira:
Functional Characterization of Transcriptional Regulatory Networks of Yeast Species. 140-154 - Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Masaki Aida:
Competitive Information Spreading on Modular Networks. 155-168 - Sepideh Maleki, Donya Saless, Dennis P. Wall, Keshav Pingali:
HyperNetVec: Fast and Scalable Hierarchical Embedding for Hypergraphs. 169-183
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.