default search action
James Cheng
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j55]Kaili Ma, Han Yang, Shanchao Yang, Kangfei Zhao, Lanqing Li, Yongqiang Chen, Junzhou Huang, James Cheng, Yu Rong:
Solving the non-submodular network collapse problems via Decision Transformer. Neural Networks 176: 106328 (2024) - [j54]Chenguang Zheng, Guanxian Jiang, Xiao Yan, Peiqi Yin, Qihui Zhou, James Cheng:
GE2: A General and Efficient Knowledge Graph Embedding Learning System. Proc. ACM Manag. Data 2(3): 183 (2024) - [j53]Qihui Zhou, Peiqi Yin, Xiao Yan, Changji Li, Guanxian Jiang, James Cheng:
Atom: An Efficient Query Serving System for Embedding-based Knowledge Graph Reasoning with Operator-level Batching. Proc. ACM Manag. Data 2(4): 193:1-193:29 (2024) - [j52]Kaihao Ma, Zhenkun Cai, Xiao Yan, Yang Zhang, Zhi Liu, Yihui Feng, Chao Li, Wei Lin, James Cheng:
PPS: Fair and efficient black-box scheduling for multi-tenant GPU clusters. Parallel Comput. 120: 103082 (2024) - [c107]Binghui Xie, Yongqiang Chen, Jiaqi Wang, Kaiwen Zhou, Bo Han, Wei Meng, James Cheng:
Enhancing Evolving Domain Generalization through Dynamic Latent Representations. AAAI 2024: 16040-16048 - [c106]Guanxian Jiang, Yunjian Zhao, Yichao Li, Zhi Liu, Tatiana Jin, Wanying Zheng, Boyang Li, James Cheng:
Wings: Efficient Online Multiple Graph Pattern Matching. ICDE 2024: 3013-3027 - [c105]Binghui Xie, Yatao Bian, Kaiwen Zhou, Yongqiang Chen, Peilin Zhao, Bo Han, Wei Meng, James Cheng:
Enhancing Neural Subset Selection: Integrating Background Information into Set Representations. ICLR 2024 - [c104]Yongqiang Chen, Yatao Bian, Bo Han, James Cheng:
How Interpretable Are Interpretable Graph Neural Networks? ICML 2024 - [c103]Da Yan, Lyuheng Yuan, Akhlaque Ahmad, Chenguang Zheng, Hongzhi Chen, James Cheng:
Systems for Scalable Graph Analytics and Machine Learning: Trends and Methods. KDD 2024: 6627-6632 - [c102]Xinzhe Wang, Zeyang Zhuang, Wei Meng, James Cheng:
Detecting and Understanding Self-Deleting JavaScript Code. WWW 2024: 1768-1778 - [i66]Binghui Xie, Yongqiang Chen, Jiaqi Wang, Kaiwen Zhou, Bo Han, Wei Meng, James Cheng:
Enhancing Evolving Domain Generalization through Dynamic Latent Representations. CoRR abs/2401.08464 (2024) - [i65]Binghui Xie, Yatao Bian, Kaiwen Zhou, Yongqiang Chen, Peilin Zhao, Bo Han, Wei Meng, James Cheng:
Enhancing Neural Subset Selection: Integrating Background Information into Set Representations. CoRR abs/2402.03139 (2024) - [i64]Chenxi Liu, Yongqiang Chen, Tongliang Liu, Mingming Gong, James Cheng, Bo Han, Kun Zhang:
Discovery of the Hidden World with Large Language Models. CoRR abs/2402.03941 (2024) - [i63]Yongqiang Chen, Yatao Bian, Bo Han, James Cheng:
How Interpretable Are Interpretable Graph Neural Networks? CoRR abs/2406.07955 (2024) - [i62]Yongqiang Chen, Quanming Yao, Juzheng Zhang, James Cheng, Yatao Bian:
HIGHT: Hierarchical Graph Tokenization for Graph-Language Alignment. CoRR abs/2406.14021 (2024) - 2023
- [j51]Tatiana Jin, Boyang Li, Yichao Li, Qihui Zhou, Qianli Ma, Yunjian Zhao, Hongzhi Chen, James Cheng:
Circinus: Fast Redundancy-Reduced Subgraph Matching. Proc. ACM Manag. Data 1(1): 12:1-12:26 (2023) - [j50]Kaihao Ma, Xiao Yan, Zhenkun Cai, Yuzhen Huang, Yidi Wu, James Cheng:
FEC: Efficient Deep Recommendation Model Training with Flexible Embedding Communication. Proc. ACM Manag. Data 1(2): 165:1-165:21 (2023) - [j49]Barakeel Fanseu Kamhoua, Lin Zhang, Kaili Ma, James Cheng, Bo Li, Bo Han:
GRACE: A General Graph Convolution Framework for Attributed Graph Clustering. ACM Trans. Knowl. Discov. Data 17(3): 31:1-31:31 (2023) - [j48]Kaili Ma, Garry Yang, Han Yang, Yongqiang Chen, James Cheng:
Calibrating and Improving Graph Contrastive Learning. Trans. Mach. Learn. Res. 2023 (2023) - [c101]James Cheng:
Graph Feature Management: Impact, Challenges and Opportunities. GRADES-NDA@SIGMOD 2023: 2:1 - [c100]Yongqiang Chen, Kaiwen Zhou, Yatao Bian, Binghui Xie, Bingzhe Wu, Yonggang Zhang, Kaili Ma, Han Yang, Peilin Zhao, Bo Han, James Cheng:
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization. ICLR 2023 - [c99]Peiqi Yin, Xiao Yan, Jinjing Zhou, Qiang Fu, Zhenkun Cai, James Cheng, Bo Tang, Minjie Wang:
DGI: An Easy and Efficient Framework for GNN Model Evaluation. KDD 2023: 5439-5450 - [c98]Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, James Cheng:
Does Invariant Graph Learning via Environment Augmentation Learn Invariance? NeurIPS 2023 - [c97]Yongqiang Chen, Wei Huang, Kaiwen Zhou, Yatao Bian, Bo Han, James Cheng:
Understanding and Improving Feature Learning for Out-of-Distribution Generalization. NeurIPS 2023 - [c96]Zhenkun Cai, Qihui Zhou, Xiao Yan, Da Zheng, Xiang Song, Chenguang Zheng, James Cheng, George Karypis:
DSP: Efficient GNN Training with Multiple GPUs. PPoPP 2023: 392-404 - [i61]Yongqiang Chen, Wei Huang, Kaiwen Zhou, Yatao Bian, Bo Han, James Cheng:
Towards Understanding Feature Learning in Out-of-Distribution Generalization. CoRR abs/2304.11327 (2023) - [i60]Zihao Wang, Yongqiang Chen, Yang Duan, Weijiang Li, Bo Han, James Cheng, Hanghang Tong:
Towards out-of-distribution generalizable predictions of chemical kinetics properties. CoRR abs/2310.03152 (2023) - [i59]Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, James Cheng:
Does Invariant Graph Learning via Environment Augmentation Learn Invariance? CoRR abs/2310.19035 (2023) - [i58]Yongqiang Chen, Binghui Xie, Kaiwen Zhou, Bo Han, Yatao Bian, James Cheng:
Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes. CoRR abs/2311.18194 (2023) - [i57]Yuntao Gui, Xiao Yan, Peiqi Yin, Han Yang, James Cheng:
SPT: Fine-Tuning Transformer-based Language Models Efficiently with Sparsification. CoRR abs/2312.10365 (2023) - 2022
- [j47]Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu, Changji Li, James Cheng, Hao Yang, Shuai Zhang:
ByteGNN: Efficient Graph Neural Network Training at Large Scale. Proc. VLDB Endow. 15(6): 1228-1242 (2022) - [j46]Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng Fang, James Cheng, Jie Zhang:
G-Tran: A High Performance Distributed Graph Database with a Decentralized Architecture. Proc. VLDB Endow. 15(11): 2545-2558 (2022) - [j45]Changji Li, Hongzhi Chen, Shuai Zhang, Yingqian Hu, Chao Chen, Zhenjie Zhang, Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen, Xudong Wang, Huiming Zhu, Xuwei Fu, Tingwei Wu, Hongfei Tan, Hengtian Ding, Mengjin Liu, Kangcheng Wang, Ting Ye, Lei Li, Xin Li, Yu Wang, Chenguang Zheng, Hao Yang, James Cheng:
ByteGraph: A High-Performance Distributed Graph Database in ByteDance. Proc. VLDB Endow. 15(12): 3306-3318 (2022) - [j44]Pengfei Zuo, Qihui Zhou, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua, James Cheng, Rongfeng He, Huabing Yan:
RACE: One-sided RDMA-conscious Extendible Hashing. ACM Trans. Storage 18(2): 11:1-11:29 (2022) - [j43]Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, Zhenkun Cai, Yuzhen Huang, James Cheng, Han Yuan, Fan Yu:
Elastic Deep Learning in Multi-Tenant GPU Clusters. IEEE Trans. Parallel Distributed Syst. 33(1): 144-158 (2022) - [j42]Zhenkun Cai, Xiao Yan, Kaihao Ma, Yidi Wu, Yuzhen Huang, James Cheng, Teng Su, Fan Yu:
TensorOpt: Exploring the Tradeoffs in Distributed DNN Training With Auto-Parallelism. IEEE Trans. Parallel Distributed Syst. 33(8): 1967-1981 (2022) - [c95]Kaiwen Zhou, Lai Tian, Anthony Man-Cho So, James Cheng:
Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums. AISTATS 2022: 3684-3708 - [c94]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. ICLR 2022 - [c93]Ruize Gao, Jiongxiao Wang, Kaiwen Zhou, Feng Liu, Binghui Xie, Gang Niu, Bo Han, James Cheng:
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack. ICML 2022: 7144-7163 - [c92]Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han, James Cheng:
Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs. NeurIPS 2022 - [c91]Barakeel Fanseu Kamhoua, Lin Zhang, Yongqiang Chen, Han Yang, Kaili Ma, Bo Han, Bo Li, James Cheng:
Exact Shape Correspondence via 2D graph convolution. NeurIPS 2022 - [c90]Guanxian Jiang, Qihui Zhou, Tatiana Jin, Boyang Li, Yunjian Zhao, Yichao Li, James Cheng:
VSGM: View-Based GPU-Accelerated Subgraph Matching on Large Graphs. SC 2022: 52:1-52:15 - [c89]Yuntao Gui, Yidi Wu, Han Yang, Tatiana Jin, Boyang Li, Qihui Zhou, James Cheng, Fan Yu:
HGL: Accelerating Heterogeneous GNN Training with Holistic Representation and Optimization. SC 2022: 72:1-72:15 - [i56]Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han, James Cheng:
Invariance Principle Meets Out-of-Distribution Generalization on Graphs. CoRR abs/2202.05441 (2022) - [i55]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. CoRR abs/2202.08057 (2022) - [i54]Binghui Xie, Chenhan Jin, Kaiwen Zhou, James Cheng, Wei Meng:
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms. CoRR abs/2205.02273 (2022) - [i53]Ruize Gao, Jiongxiao Wang, Kaiwen Zhou, Feng Liu, Binghui Xie, Gang Niu, Bo Han, James Cheng:
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack. CoRR abs/2206.07314 (2022) - [i52]Yongqiang Chen, Kaiwen Zhou, Yatao Bian, Binghui Xie, Kaili Ma, Yonggang Zhang, Han Yang, Bo Han, James Cheng:
Pareto Invariant Risk Minimization. CoRR abs/2206.07766 (2022) - [i51]Chenhan Jin, Kaiwen Zhou, Bo Han, James Cheng, Ming-Chang Yang:
Efficient Private SCO for Heavy-Tailed Data via Clipping. CoRR abs/2206.13011 (2022) - [i50]Yifan Hou, Jie Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen, Ming-Chang Yang:
Measuring and Improving the Use of Graph Information in Graph Neural Networks. CoRR abs/2206.13170 (2022) - [i49]Yifan Hou, Hongzhi Chen, Changji Li, James Cheng, Ming-Chang Yang:
A Representation Learning Framework for Property Graphs. CoRR abs/2206.13176 (2022) - [i48]Peiqi Yin, Xiao Yan, Jinjing Zhou, Qiang Fu, Zhenkun Cai, James Cheng, Bo Tang, Minjie Wang:
DGI: Easy and Efficient Inference for GNNs. CoRR abs/2211.15082 (2022) - 2021
- [j41]Guimu Guo, Hongzhi Chen, Da Yan, James Cheng, Jake Y. Chen, Zechen Chong:
Scalable De Novo Genome Assembly Using a Pregel-Like Graph-Parallel System. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2): 731-744 (2021) - [j40]Yunjian Zhao, Zhi Liu, Yidi Wu, Guanxian Jiang, James Cheng, Kunlong Liu, Xiao Yan:
Timestamped State Sharing for Stream Analytics. IEEE Trans. Parallel Distributed Syst. 32(11): 2691-2704 (2021) - [c88]Han Yang, Kaili Ma, James Cheng:
Rethinking Graph Regularization for Graph Neural Networks. AAAI 2021: 4573-4581 - [c87]Barakeel Fanseu Kamhoua, Lin Zhang, Kaili Ma, James Cheng, Bo Li, Bo Han:
HyperGraph Convolution Based Attributed HyperGraph Clustering. CIKM 2021: 453-463 - [c86]Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, Fan Yu:
DGCL: an efficient communication library for distributed GNN training. EuroSys 2021: 130-144 - [c85]Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chengguang Zheng, James Cheng, Fan Yu:
Seastar: vertex-centric programming for graph neural networks. EuroSys 2021: 359-375 - [c84]Han Yang, Xiao Yan, Xinyan Dai, Yongqiang Chen, James Cheng:
Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs. IJCNN 2021: 1-8 - [c83]Yidi Wu, Yuntao Gui, Tatiana Jin, James Cheng, Xiao Yan, Peiqi Yin, Yufei Cai, Bo Tang, Fan Yu:
Vertex-Centric Visual Programming for Graph Neural Networks. SIGMOD Conference 2021: 2803-2807 - [c82]Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi Wu, Yang Zhang, James Cheng, Chao Li, Tao Guan:
Scaling Large Production Clusters with Partitioned Synchronization. USENIX ATC 2021: 81-97 - [i47]Kaili Ma, Haochen Yang, Han Yang, Tatiana Jin, Pengfei Chen, Yongqiang Chen, Barakeel Fanseu Kamhoua, James Cheng:
Improving Graph Representation Learning by Contrastive Regularization. CoRR abs/2101.11525 (2021) - [i46]Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng Fang, James Cheng, Jie Zhang:
G-Tran: Making Distributed Graph Transactions Fast. CoRR abs/2105.04449 (2021) - [i45]Kaiwen Zhou, Lai Tian, Anthony Man-Cho So, James Cheng:
Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums. CoRR abs/2105.12062 (2021) - [i44]Ruize Gao, Feng Liu, Kaiwen Zhou, Gang Niu, Bo Han, James Cheng:
Local Reweighting for Adversarial Training. CoRR abs/2106.15776 (2021) - [i43]Kaiwen Zhou, Anthony Man-Cho So, James Cheng:
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization. CoRR abs/2109.15292 (2021) - 2020
- [j39]James Cheng, Starr Hoffman:
Librarians and Administrators on Academic Library Impact Research: Characteristics and Perspectives. Coll. Res. Libr. 81(3) (2020) - [j38]Fanhua Shang, Kaiwen Zhou, Hongying Liu, James Cheng, Ivor W. Tsang, Lijun Zhang, Dacheng Tao, Licheng Jiao:
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning. IEEE Trans. Knowl. Data Eng. 32(1): 188-202 (2020) - [c81]Xinyan Dai, Xiao Yan, Kelvin Kai Wing Ng, Jiu Liu, James Cheng:
Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search. AAAI 2020: 51-58 - [c80]Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, Ming-Chang Yang:
Understanding and Improving Proximity Graph Based Maximum Inner Product Search. AAAI 2020: 139-146 - [c79]Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo, Benben Liao, Guangyong Chen:
PMD: An Optimal Transportation-Based User Distance for Recommender Systems. ECIR (2) 2020: 272-280 - [c78]Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang Zheng, Guanxian Jiang, James Cheng:
Improving resource utilization by timely fine-grained scheduling. EuroSys 2020: 20:1-20:16 - [c77]Yifan Hou, Jie Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen, Ming-Chang Yang:
Measuring and Improving the Use of Graph Information in Graph Neural Networks. ICLR 2020 - [c76]Qinghua Ding, Kaiwen Zhou, James Cheng:
Tight Convergence Rate of Gradient Descent for Eigenvalue Computation. IJCAI 2020: 3276-3282 - [c75]Kaiwen Zhou, Anthony Man-Cho So, James Cheng:
Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates. NeurIPS 2020 - [c74]Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, James Cheng:
Convolutional Embedding for Edit Distance. SIGIR 2020: 599-608 - [c73]Hongzhi Chen, Bowen Wu, Shiyuan Deng, Chenghuan Huang, Changji Li, Yichao Li, James Cheng:
High Performance Distributed OLAP on Property Graphs with Grasper. SIGMOD Conference 2020: 2705-2708 - [c72]Kaiwen Zhou, Yanghua Jin, Qinghua Ding, James Cheng:
Amortized Nesterov's Momentum: A Robust Momentum and Its Application to Deep Learning. UAI 2020: 211-220 - [c71]Yitong Meng, Xiao Yan, Weiwen Liu, Huanhuan Wu, James Cheng:
Wasserstein Collaborative Filtering for Item Cold-start Recommendation. UMAP 2020: 318-322 - [i42]Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, James Cheng:
Edit Distance Embedding using Convolutional Neural Networks. CoRR abs/2001.11692 (2020) - [i41]Han Yang, Xiao Yan, Xinyan Dai, James Cheng:
Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs. CoRR abs/2002.07518 (2020) - [i40]Zhenkun Cai, Kaihao Ma, Xiao Yan, Yidi Wu, Yuzhen Huang, James Cheng, Teng Su, Fan Yu:
TensorOpt: Exploring the Tradeoffs in Distributed DNN Training with Auto-Parallelism. CoRR abs/2004.10856 (2020) - [i39]Kaiwen Zhou, Anthony Man-Cho So, James Cheng:
Boosting First-order Methods by Shifting Objective: New Schemes with Faster Worst Case Rates. CoRR abs/2005.12061 (2020) - [i38]Guoji Fu, Yifan Hou, Jie Zhang, Kaili Ma, Barakeel Fanseu Kamhoua, James Cheng:
Understanding Graph Neural Networks from Graph Signal Denoising Perspectives. CoRR abs/2006.04386 (2020) - [i37]Haibo Xiu, Xiao Yan, Xiaoqiang Wang, James Cheng, Lei Cao:
Hierarchical Graph Matching Network for Graph Similarity Computation. CoRR abs/2006.16551 (2020) - [i36]Han Yang, Kaili Ma, James Cheng:
Rethinking Graph Regularization For Graph Neural Networks. CoRR abs/2009.02027 (2020) - [i35]Yitong Meng, Jie Liu, Xiao Yan, James Cheng:
The item selection problem for user cold-start recommendation. CoRR abs/2010.14013 (2020)
2010 – 2019
- 2019
- [j37]Yuzhen Huang, Yingjie Shi, Zheng Zhong, Yihui Feng, James Cheng, Jiwei Li, Haochuan Fan, Chao Li, Tao Guan, Jingren Zhou:
Yugong: Geo-Distributed Data and Job Placement at Scale. Proc. VLDB Endow. 12(12): 2155-2169 (2019) - [c70]Kaiwen Zhou, Qinghua Ding, Fanhua Shang, James Cheng, Danli Li, Zhi-Quan Luo:
Direct Acceleration of SAGA using Sampled Negative Momentum. AISTATS 2019: 1602-1610 - [c69]Shiyuan Deng, Xiao Yan, Kelvin Kai Wing Ng, Chenyu Jiang, James Cheng:
Pyramid: A General Framework for Distributed Similarity Search on Large-scale Datasets. IEEE BigData 2019: 1066-1071 - [c68]Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jie Zhang, Yifan Hou, Xiao Yan:
Grasper: A High Performance Distributed System for OLAP on Property Graphs. SoCC 2019: 87-100 - [c67]Da Yan, James Cheng, Hongzhi Chen, Cheng Long, Purushotham V. Bangalore:
Lightweight Fault Tolerance in Pregel-Like Systems. ICPP 2019: 69:1-69:10 - [c66]Yifan Hou, Hongzhi Chen, Changji Li, James Cheng, Ming-Chang Yang:
A Representation Learning Framework for Property Graphs. KDD 2019: 65-73 - [c65]Hongzhi Chen, Xiaoxi Wang, Chenghuan Huang, Juncheng Fang, Yifan Hou, Changji Li, James Cheng:
Large Scale Graph Mining with G-Miner. SIGMOD Conference 2019: 1881-1884 - [c64]Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu, Zhanhao Liu, Shuo Tu:
Tangram: Bridging Immutable and Mutable Abstractions for Distributed Data Analytics. USENIX ATC 2019: 191-206 - [i34]Shiyuan Deng, Xiao Yan, Kelvin Kai Wing Ng, Chenyu Jiang, James Cheng:
Pyramid: A General Framework for Distributed Similarity Search. CoRR abs/1906.10602 (2019) - [i33]Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, James Cheng:
Elastic deep learning in multi-tenant GPU cluster. CoRR abs/1909.11985 (2019) - [i32]Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, Ming-Chang Yang:
Understanding and Improving Proximity Graph based Maximum Inner Product Search. CoRR abs/1909.13459 (2019) - [i31]Xinyan Dai, Xiao Yan, Kelvin Kai Wing Ng, Jie Liu, James Cheng:
Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search. CoRR abs/1911.04654 (2019) - [i30]Xinyan Dai, Xiao Yan, Kaiwen Zhou, Han Yang, Kelvin Kai Wing Ng, James Cheng, Yu Fan:
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning. CoRR abs/1911.04655 (2019) - 2018
- [j36]Fanhua Shang, James Cheng, Yuanyuan Liu, Zhi-Quan Luo, Zhouchen Lin:
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 40(9): 2066-2080 (2018) - [j35]Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng Li, Yuying Guo, James Cheng:
FlexPS: Flexible Parallelism Control in Parameter Server Architecture. Proc. VLDB Endow. 11(5): 566-579 (2018) - [j34]Fanhua Shang, Yuanyuan Liu, James Cheng, Da Yan:
Fuzzy Double Trace Norm Minimization for Recommendation Systems. IEEE Trans. Fuzzy Syst. 26(4): 2039-2049 (2018) - [j33]Da Yan, Yuzhen Huang, Miao Liu, Hongzhi Chen, James Cheng, Huanhuan Wu, Chengcui Zhang:
GraphD: Distributed Vertex-Centric Graph Processing Beyond the Memory Limit. IEEE Trans. Parallel Distributed Syst. 29(1): 99-114 (2018) - [c63]Fanhua Shang, Licheng Jiao, Kaiwen Zhou, James Cheng, Yan Ren, Yufei Jin:
ASVRG: Accelerated Proximal SVRG. ACML 2018: 815-830 - [c62]Fanhua Shang, Yuanyuan Liu, Kaiwen Zhou, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida:
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization. AISTATS 2018: 1027-1036 - [c61]Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, James Cheng:
G-Miner: an efficient task-oriented graph mining system. EuroSys 2018: 32:1-32:12 - [c60]Da Yan, Hongzhi Chen, James Cheng, Zhenkun Cai, Bin Shao:
Scalable De Novo Genome Assembly Using Pregel. ICDE 2018: 1216-1219 - [c59]Kaiwen Zhou, Fanhua Shang, James Cheng:
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates. ICML 2018: 5975-5984 - [c58]Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, James Cheng:
Norm-Ranging LSH for Maximum Inner Product Search. NeurIPS 2018: 2956-2965 - [c57]Jinfeng Li, Xiao Yan, Jie Zhang, An Xu, James Cheng, Jie Liu, Kelvin Kai Wing Ng, Ti-Chung Cheng:
A General and Efficient Querying Method for Learning to Hash. SIGMOD Conference 2018: 1333-1347 - [i29]Da Yan, Hongzhi Chen, James Cheng, Zhenkun Cai, Bin Shao:
Scalable De Novo Genome Assembly Using Pregel. CoRR abs/1801.04453 (2018) - [i28]Fanhua Shang, Kaiwen Zhou, James Cheng, Ivor W. Tsang, Lijun Zhang, Dacheng Tao:
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning. CoRR abs/1802.09932 (2018) - [i27]Fanhua Shang, Yuanyuan Liu, Kaiwen Zhou, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida:
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization. CoRR abs/1802.09933 (2018) - [i26]Fanhua Shang, Yuanyuan Liu, James Cheng:
Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization. CoRR abs/1803.00420 (2018) - [i25]Kaiwen Zhou, Fanhua Shang, James Cheng:
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates. CoRR abs/1806.11027 (2018) - [i24]Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, James Cheng:
Norm-Ranging LSH for Maximum Inner Product Search. CoRR abs/1809.08782 (2018) - [i23]Fanhua Shang, Licheng Jiao, Kaiwen Zhou, James Cheng, Yan Ren, Yufei Jin:
ASVRG: Accelerated Proximal SVRG. CoRR abs/1810.03105 (2018) - [i22]Fanhua Shang, James Cheng, Yuanyuan Liu, Zhi-Quan Luo, Zhouchen Lin:
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications. CoRR abs/1810.05186 (2018) - [i21]Xiao Yan, Xinyan Dai, Jie Liu, Kaiwen Zhou, James Cheng:
Norm-Range Partition: A Univiseral Catalyst for LSH based Maximum Inner Product Search (MIPS). CoRR abs/1810.09104 (2018) - 2017
- [b1]Da Yan, Yuanyuan Tian, James Cheng:
Systems for Big Graph Analytics. Springer Briefs in Computer Science, Springer 2017, ISBN 978-3-319-58216-0, pp. 1-92 - [j32]Zhiqiang Xu, James Cheng, Xiaokui Xiao, Ryohei Fujimaki, Yusuke Muraoka:
Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering. Knowl. Inf. Syst. 53(1): 239-268 (2017) - [j31]Fan Yang, Fanhua Shang, Yuzhen Huang, James Cheng, Jinfeng Li, Yunjian Zhao, Ruihao Zhao:
LFTF: A Framework for Efficient Tensor Analytics at Scale. Proc. VLDB Endow. 10(7): 745-756 (2017) - [c56]Yuanyuan Liu, Fanhua Shang, James Cheng:
Accelerated Variance Reduced Stochastic ADMM. AAAI 2017: 2287-2293 - [c55]Qizhen Zhang, Hongzhi Chen, Da Yan, James Cheng, Boon Thau Loo, Purushotham V. Bangalore:
Architectural implications on the performance and cost of graph analytics systems. SoCC 2017: 40-51 - [c54]Huanhuan Wu, Yunjian Zhao, James Cheng, Da Yan:
Efficient Processing of Growing Temporal Graphs. DASFAA (2) 2017: 387-403 - [c53]Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, Licheng Jiao:
Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds. NIPS 2017: 4868-4877 - [c52]Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, Ruihao Zhao:
LoSHa: A General Framework for Scalable Locality Sensitive Hashing. SIGIR 2017: 635-644 - [c51]Fan Yang, Yuzhen Huang, Yunjian Zhao, Jinfeng Li, Guanxian Jiang, James Cheng:
The Best of Both Worlds: Big Data Programming with Both Productivity and Performance. SIGMOD Conference 2017: 1619-1622 - [i20]Fanhua Shang, Yuanyuan Liu, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida:
Variance Reduced Stochastic Gradient Descent with Sufficient Decrease. CoRR abs/1703.06807 (2017) - [i19]Fanhua Shang, Yuanyuan Liu, James Cheng, Jiacheng Zhuo:
Fast Stochastic Variance Reduced Gradient Method with Momentum Acceleration for Machine Learning. CoRR abs/1703.07948 (2017) - [i18]Yuanyuan Liu, Fanhua Shang, James Cheng:
Accelerated Variance Reduced Stochastic ADMM. CoRR abs/1707.03190 (2017) - [i17]Da Yan, Hongzhi Chen, James Cheng, M. Tamer Özsu, Qizhen Zhang, John C. S. Lui:
G-thinker: Big Graph Mining Made Easier and Faster. CoRR abs/1709.03110 (2017) - 2016
- [j30]Fan Yang, Jinfeng Li, James Cheng:
Husky: Towards a More Efficient and Expressive Distributed Computing Framework. Proc. VLDB Endow. 9(5): 420-431 (2016) - [j29]Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui, Qizhen Zhang, Wilfred Ng:
A General-Purpose Query-Centric Framework for Querying Big Graphs. Proc. VLDB Endow. 9(7): 564-575 (2016) - [j28]Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, Hejun Wu:
Efficient Algorithms for Temporal Path Computation. IEEE Trans. Knowl. Data Eng. 28(11): 2927-2942 (2016) - [j27]Yuanyuan Liu, Fanhua Shang, Wei Fan, James Cheng, Hong Cheng:
Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition. IEEE Trans. Neural Networks Learn. Syst. 27(12): 2551-2563 (2016) - [j26]Yanyan Xu, James Cheng, Ada Wai-Chee Fu:
Distributed Maximal Clique Computation and Management. IEEE Trans. Serv. Comput. 9(1): 110-122 (2016) - [c50]Fanhua Shang, Yuanyuan Liu, James Cheng:
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization. AAAI 2016: 2016-2022 - [c49]Fanhua Shang, Yuanyuan Liu, James Cheng:
Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization. AISTATS 2016: 620-629 - [c48]Cheng Chen, Hejun Wu, Dyce Jing Zhao, Da Yan, James Cheng:
SGraph: A Distributed Streaming System for Processing Big Graphs. BigCom 2016: 285-294 - [c47]Jinfeng Li, James Cheng, Yunjian Zhao, Fan Yang, Yuzhen Huang, Haipeng Chen, Ruihao Zhao:
A comparison of general-purpose distributed systems for data processing. IEEE BigData 2016: 378-383 - [c46]Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, Yiping Ke:
Reachability and time-based path queries in temporal graphs. ICDE 2016: 145-156 - [c45]Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, John C. S. Lui:
Diversified Temporal Subgraph Pattern Mining. KDD 2016: 1965-1974 - [c44]Qizhen Zhang, Da Yan, James Cheng:
Quegel: A General-Purpose System for Querying Big Graphs. SIGMOD Conference 2016: 2189-2192 - [c43]Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, James Cheng:
Big Graph Analytics Systems. SIGMOD Conference 2016: 2241-2243 - [c42]Luyang Wang, Pallab Bhattacharya, Yao-Min Chen, Shrinivas Joshi, James Cheng:
End-to-End Java Security Performance Enhancements for Oracle SPARC Servers. ICPE 2016: 159-166 - [i16]Da Yan, Yuzhen Huang, James Cheng, Huanhuan Wu:
Efficient Processing of Very Large Graphs in a Small Cluster. CoRR abs/1601.05590 (2016) - [i15]Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, Yiping Ke:
Efficient Processing of Reachability and Time-Based Path Queries in a Temporal Graph. CoRR abs/1601.05909 (2016) - [i14]Da Yan, James Cheng, Fan Yang:
Lightweight Fault Tolerance in Large-Scale Distributed Graph Processing. CoRR abs/1601.06496 (2016) - [i13]Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui, Qizhen Zhang, Wilfred Ng:
Quegel: A General-Purpose Query-Centric Framework for Querying Big Graphs. CoRR abs/1601.06497 (2016) - [i12]Fanhua Shang, Yuanyuan Liu, James Cheng:
Unified Scalable Equivalent Formulations for Schatten Quasi-Norms. CoRR abs/1606.00668 (2016) - [i11]Fanhua Shang, Yuanyuan Liu, James Cheng:
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization. CoRR abs/1606.01245 (2016) - 2015
- [j25]Fanhua Shang, Yuanyuan Liu, Hanghang Tong, James Cheng, Hong Cheng:
Robust bilinear factorization with missing and grossly corrupted observations. Inf. Sci. 307: 53-72 (2015) - [j24]Wenting Liu, Guangxia Li, James Cheng:
Fast PageRank approximation by adaptive sampling. Knowl. Inf. Syst. 42(1): 127-146 (2015) - [j23]Da Yan, James Cheng, Zhou Zhao, Wilfred Ng:
Efficient location-based search of trajectories with location importance. Knowl. Inf. Syst. 45(1): 215-245 (2015) - [j22]Yuanyuan Liu, Fanhua Shang, Licheng Jiao, James Cheng, Hong Cheng:
Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data. IEEE Trans. Cybern. 45(11): 2437-2448 (2015) - [c41]Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, Hejun Wu:
Core decomposition in large temporal graphs. IEEE BigData 2015: 649-658 - [c40]Da Yan, James Cheng, Yi Lu, Wilfred Ng:
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation. WWW 2015: 1307-1317 - [i10]Da Yan, James Cheng, Yi Lu, Wilfred Ng:
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation. CoRR abs/1503.00626 (2015) - [i9]Fanhua Shang, Yuanyuan Liu, James Cheng, Hong Cheng:
Regularized Orthogonal Tensor Decompositions for Multi-Relational Learning. CoRR abs/1512.08120 (2015) - 2014
- [j21]Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, Yanyan Xu:
Path Problems in Temporal Graphs. Proc. VLDB Endow. 7(9): 721-732 (2014) - [j20]Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, Yingyi Bu:
Pregel Algorithms for Graph Connectivity Problems with Performance Guarantees. Proc. VLDB Endow. 7(14): 1821-1832 (2014) - [j19]Da Yan, James Cheng, Yi Lu, Wilfred Ng:
Blogel: A Block-Centric Framework for Distributed Computation on Real-World Graphs. Proc. VLDB Endow. 7(14): 1981-1992 (2014) - [j18]Yi Lu, James Cheng, Da Yan, Huanhuan Wu:
Large-Scale Distributed Graph Computing Systems: An Experimental Evaluation. Proc. VLDB Endow. 8(3): 281-292 (2014) - [j17]Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng:
GBAGC: A General Bayesian Framework for Attributed Graph Clustering. ACM Trans. Knowl. Discov. Data 9(1): 5:1-5:43 (2014) - [j16]James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, Jeffrey Xu Yu:
Efficient processing of k-hop reachability queries. VLDB J. 23(2): 227-252 (2014) - [c39]Fanhua Shang, Yuanyuan Liu, James Cheng:
Generalized Higher-Order Tensor Decomposition via Parallel ADMM. AAAI 2014: 1279-1285 - [c38]Jia Wang, Ada Wai-Chee Fu, James Cheng:
Rectangle Counting in Large Bipartite Graphs. BigData Congress 2014: 17-24 - [c37]Yanyan Xu, James Cheng, Ada Wai-Chee Fu, Yingyi Bu:
Distributed Maximal Clique Computation. BigData Congress 2014: 160-167 - [c36]Zhou Zhao, James Cheng, Furu Wei, Ming Zhou, Wilfred Ng, Yingjun Wu:
SocialTransfer: Transferring Social Knowledge for Cold-Start Cowdsourcing. CIKM 2014: 779-788 - [c35]Fanhua Shang, Yuanyuan Liu, James Cheng, Hong Cheng:
Robust Principal Component Analysis with Missing Data. CIKM 2014: 1149-1158 - [c34]Zhou Zhao, James Cheng, Wilfred Ng:
Truth Discovery in Data Streams: A Single-Pass Probabilistic Approach. CIKM 2014: 1589-1598 - [c33]Fanhua Shang, Yuanyuan Liu, James Cheng, Hong Cheng:
Recovering Low-Rank and Sparse Matrices via Robust Bilateral Factorization. ICDM 2014: 965-970 - [c32]Yuanyuan Liu, Fanhua Shang, Wei Fan, James Cheng, Hong Cheng:
Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and Completion. NIPS 2014: 1763-1771 - [c31]Yuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng, Hanghang Tong:
Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion. SDM 2014: 866-874 - [c30]Linhong Zhu, Aram Galstyan, James Cheng, Kristina Lerman:
Tripartite graph clustering for dynamic sentiment analysis on social media. SIGMOD Conference 2014: 1531-1542 - [c29]Yuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng:
Nuclear Norm Regularized Least Squares Optimization on Grassmannian Manifolds. UAI 2014: 515-524 - [i8]Silu Huang, James Cheng, Huanhuan Wu:
Temporal Graph Traversals: Definitions, Algorithms, and Applications. CoRR abs/1401.1919 (2014) - [i7]Linhong Zhu, Aram Galstyan, James Cheng, Kristina Lerman:
Tripartite Graph Clustering for Dynamic Sentiment Analysis on Social Media. CoRR abs/1402.6010 (2014) - [i6]Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, James Cheng, Yanyan Xu:
Hop Doubling Label Indexing for Point-to-Point Distance Querying on Scale-Free Networks. CoRR abs/1403.0779 (2014) - [i5]Fanhua Shang, Yuanyuan Liu, James Cheng:
Generalized Higher-Order Tensor Decomposition via Parallel ADMM. CoRR abs/1407.1399 (2014) - [i4]Fanhua Shang, Yuanyuan Liu, Hanghang Tong, James Cheng, Hong Cheng:
Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations. CoRR abs/1409.1062 (2014) - 2013
- [j15]Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, Raymond Chi-Wing Wong:
IS-LABEL: an Independent-Set based Labeling Scheme for Point-to-Point Distance Querying. Proc. VLDB Endow. 6(6): 457-468 (2013) - [c28]Da Yan, James Cheng, Wilfred Ng, Steven Liu:
Finding distance-preserving subgraphs in large road networks. ICDE 2013: 625-636 - [c27]Jia Wang, James Cheng, Ada Wai-Chee Fu:
Redundancy-aware maximal cliques. KDD 2013: 122-130 - [c26]James Cheng, Silu Huang, Huanhuan Wu, Ada Wai-Chee Fu:
TF-Label: a topological-folding labeling scheme for reachability querying in a large graph. SIGMOD Conference 2013: 193-204 - 2012
- [j14]Jia Wang, James Cheng:
Truss Decomposition in Massive Networks. Proc. VLDB Endow. 5(9): 812-823 (2012) - [j13]James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, Jeffrey Xu Yu:
K-Reach: Who is in Your Small World. Proc. VLDB Endow. 5(11): 1292-1303 (2012) - [j12]Shumo Chu, James Cheng:
Triangle listing in massive networks. ACM Trans. Knowl. Discov. Data 6(4): 17:1-17:32 (2012) - [c25]Wenqing Lin, Xiaokui Xiao, James Cheng, Sourav S. Bhowmick:
Efficient algorithms for generalized subgraph query processing. CIKM 2012: 325-334 - [c24]James Cheng, Linhong Zhu, Yiping Ke, Shumo Chu:
Fast algorithms for maximal clique enumeration with limited memory. KDD 2012: 1240-1248 - [c23]James Cheng, Yiping Ke, Shumo Chu, Carter Cheng:
Efficient processing of distance queries in large graphs: a vertex cover approach. SIGMOD Conference 2012: 457-468 - [c22]Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng:
A model-based approach to attributed graph clustering. SIGMOD Conference 2012: 505-516 - [i3]Jia Wang, James Cheng:
Truss Decomposition in Massive Networks. CoRR abs/1205.6693 (2012) - [i2]James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, Jeffrey Xu Yu:
K-Reach: Who is in Your Small World. CoRR abs/1208.0090 (2012) - [i1]Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, Shumo Chu, Raymond Chi-Wing Wong:
IS-LABEL: an Independent-Set based Labeling Scheme for Point-to-Point Distance Querying on Large Graphs. CoRR abs/1211.2367 (2012) - 2011
- [j11]Linhong Zhu, Wee Keong Ng, James Cheng:
Structure and attribute index for approximate graph matching in large graphs. Inf. Syst. 36(6): 958-972 (2011) - [j10]James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, Linhong Zhu:
Finding maximal cliques in massive networks. ACM Trans. Database Syst. 36(4): 21:1-21:34 (2011) - [j9]James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu:
Fast graph query processing with a low-cost index. VLDB J. 20(4): 521-539 (2011) - [c21]James Cheng, Yiping Ke, Shumo Chu, M. Tamer Özsu:
Efficient core decomposition in massive networks. ICDE 2011: 51-62 - [c20]Shumo Chu, James Cheng:
Triangle listing in massive networks and its applications. KDD 2011: 672-680 - 2010
- [c19]Yiping Ke, James Cheng, Jeffrey Xu Yu:
Querying Large Graph Databases. DASFAA (2) 2010: 487-488 - [c18]Changjiu Jin, Sourav S. Bhowmick, Xiaokui Xiao, James Cheng, Byron Choi:
GBLENDER: towards blending visual query formulation and query processing in graph databases. SIGMOD Conference 2010: 111-122 - [c17]James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, Linhong Zhu:
Finding maximal cliques in massive networks by H*-graph. SIGMOD Conference 2010: 447-458 - [c16]James Cheng, Ada Wai-Chee Fu, Jia Liu:
K-isomorphism: privacy preserving network publication against structural attacks. SIGMOD Conference 2010: 459-470
2000 – 2009
- 2009
- [j8]James Cheng, Yiping Ke, Wilfred Ng:
Efficient query processing on graph databases. ACM Trans. Database Syst. 34(1): 2:1-2:48 (2009) - [c15]James Cheng, Yiping Ke, Wilfred Ng:
Efficient processing of group-oriented connection queries in a large graph. CIKM 2009: 1481-1484 - [c14]James Cheng, Yiping Ke, Wilfred Ng, Jeffrey Xu Yu:
Context-Aware Object Connection Discovery in Large Graphs. ICDE 2009: 856-867 - [c13]Yiping Ke, James Cheng, Jeffrey Xu Yu:
Efficient Discovery of Frequent Correlated Subgraph Pairs. ICDM 2009: 239-248 - [c12]Yiping Ke, James Cheng, Jeffrey Xu Yu:
Top-k Correlative Graph Mining. SDM 2009: 1038-1049 - 2008
- [j7]James Cheng, Yiping Ke, Wilfred Ng:
Effective elimination of redundant association rules. Data Min. Knowl. Discov. 16(2): 221-249 (2008) - [j6]James Cheng, Yiping Ke, Wilfred Ng:
Maintaining frequent closed itemsets over a sliding window. J. Intell. Inf. Syst. 31(3): 191-215 (2008) - [j5]James Cheng, Yiping Ke, Wilfred Ng:
A survey on algorithms for mining frequent itemsets over data streams. Knowl. Inf. Syst. 16(1): 1-27 (2008) - [j4]Yiping Ke, James Cheng, Wilfred Ng:
An information-theoretic approach to quantitative association rule mining. Knowl. Inf. Syst. 16(2): 213-244 (2008) - [j3]Yiping Ke, James Cheng, Wilfred Ng:
Efficient Correlation Search from Graph Databases. IEEE Trans. Knowl. Data Eng. 20(12): 1601-1615 (2008) - [j2]Yiping Ke, James Cheng, Wilfred Ng:
Correlated pattern mining in quantitative databases. ACM Trans. Database Syst. 33(3): 14:1-14:45 (2008) - 2007
- [c11]Wilfred Ng, James Cheng:
An Efficient Index Lattice for XML Query Evaluation. DASFAA 2007: 753-767 - [c10]James Cheng, Wilfred Ng:
A Development of Hash-Lookup Trees to Support Querying Streaming XML. DASFAA 2007: 768-780 - [c9]An Lu, Yiping Ke, James Cheng, Wilfred Ng:
Mining Vague Association Rules. DASFAA 2007: 891-897 - [c8]Yiping Ke, James Cheng, Wilfred Ng:
Correlation search in graph databases. KDD 2007: 390-399 - [c7]James Cheng, Yiping Ke, Wilfred Ng, An Lu:
Fg-index: towards verification-free query processing on graph databases. SIGMOD Conference 2007: 857-872 - 2006
- [j1]Wilfred Ng, Wai Yeung Lam, James Cheng:
Comparative Analysis of XML Compression Technologies. World Wide Web 9(1): 5-33 (2006) - [c6]Yin Yang, Wilfred Ng, Ho Lam Lau, James Cheng:
An Efficient Approach to Support Querying Secure Outsourced XML Information. CAiSE 2006: 157-171 - [c5]Yiping Ke, James Cheng, Wilfred Ng:
MIC Framework: An Information-Theoretic Approach to Quantitative Association Rule Mining. ICDE 2006: 112 - [c4]James Cheng, Yiping Ke, Wilfred Ng:
delta-Tolerance Closed Frequent Itemsets. ICDM 2006: 139-148 - [c3]Yiping Ke, James Cheng, Wilfred Ng:
Mining quantitative correlated patterns using an information-theoretic approach. KDD 2006: 227-236 - [c2]James Cheng, Yiping Ke, Wilfred Ng:
Maintaining Frequent Itemsets over High-Speed Data Streams. PAKDD 2006: 462-467 - 2004
- [c1]James Cheng, Wilfred Ng:
XQzip: Querying Compressed XML Using Structural Indexing. EDBT 2004: 219-236
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-19 21:46 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint