default search action
Andrew M. Stuart
Person information
- affiliation: California Institute of Technology, Pasadena, CA, USA
- affiliation (former): University of Warwick, Department of Mathematics, Coventry, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j68]Pau Batlle, Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart:
Error analysis of kernel/GP methods for nonlinear and parametric PDEs. J. Comput. Phys. 520: 113488 (2025) - [j67]Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart:
Gaussian measures conditioned on nonlinear observations: consistency, MAP estimators, and simulation. Stat. Comput. 35(1): 10 (2025) - 2024
- [j66]Jinlong Wu, Matthew E. Levine, Tapio Schneider, Andrew M. Stuart:
Learning about structural errors in models of complex dynamical systems. J. Comput. Phys. 513: 113157 (2024) - [j65]Kaushik Bhattacharya, Nikola B. Kovachki, Aakila Rajan, Andrew M. Stuart, Margaret Trautner:
Learning Homogenization for Elliptic Operators. SIAM J. Numer. Anal. 62(4): 1844-1873 (2024) - [j64]José A. Carrillo, F. Hoffmann, Andrew M. Stuart, Urbain Vaes:
The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting. SIAM J. Numer. Anal. 62(6): 2549-2587 (2024) - [j63]Nicholas H. Nelsen, Andrew M. Stuart:
Operator Learning Using Random Features: A Tool for Scientific Computing. SIAM Rev. 66(3): 535-571 (2024) - [i45]Jinlong Wu, Matthew E. Levine, Tapio Schneider, Andrew M. Stuart:
Learning About Structural Errors in Models of Complex Dynamical Systems. CoRR abs/2401.00035 (2024) - [i44]Nikola B. Kovachki, Samuel Lanthaler, Andrew M. Stuart:
Operator Learning: Algorithms and Analysis. CoRR abs/2402.15715 (2024) - [i43]Samuel Lanthaler, Andrew M. Stuart, Margaret Trautner:
Discretization Error of Fourier Neural Operators. CoRR abs/2405.02221 (2024) - [i42]Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart:
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation. CoRR abs/2405.13149 (2024) - [i41]Ömer Deniz Akyildiz, Mark Girolami, Andrew M. Stuart, Arnaud Vadeboncoeur:
Efficient Prior Calibration From Indirect Data. CoRR abs/2405.17955 (2024) - [i40]Edoardo Calvello, Nikola B. Kovachki, Matthew E. Levine, Andrew M. Stuart:
Continuum Attention for Neural Operators. CoRR abs/2406.06486 (2024) - [i39]Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, Andrew M. Stuart:
Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows. CoRR abs/2406.17263 (2024) - [i38]Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, Tim Sullivan:
Autoencoders in Function Space. CoRR abs/2408.01362 (2024) - [i37]Nicholas H. Nelsen, Andrew M. Stuart:
Operator Learning Using Random Features: A Tool for Scientific Computing. CoRR abs/2408.06526 (2024) - [i36]Edoardo Calvello, Pierre Monmarché, Andrew M. Stuart, Urbain Vaes:
Accuracy of the Ensemble Kalman Filter in the Near-Linear Setting. CoRR abs/2409.09800 (2024) - 2023
- [j62]Assyr Abdulle, Giacomo Garegnani, Grigorios A. Pavliotis, Andrew M. Stuart, Andrea Zanoni:
Drift Estimation of Multiscale Diffusions Based on Filtered Data. Found. Comput. Math. 23(1): 33-84 (2023) - [j61]Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs. J. Mach. Learn. Res. 24: 89:1-89:97 (2023) - [j60]Maarten V. de Hoop, Nikola B. Kovachki, Nicholas H. Nelsen, Andrew M. Stuart:
Convergence Rates for Learning Linear Operators from Noisy Data. SIAM/ASA J. Uncertain. Quantification 11(2): 480-513 (2023) - [j59]Kaushik Bhattacharya, Burigede Liu, Andrew M. Stuart, Margaret Trautner:
Learning Markovian Homogenized Models in Viscoelasticity. Multiscale Model. Simul. 21(2): 641-679 (2023) - [i35]Tapio Helin, Andrew M. Stuart, Aretha L. Teckentrup, Konstantinos Zygalakis:
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures. CoRR abs/2302.04518 (2023) - [i34]Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, Andrew M. Stuart:
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance. CoRR abs/2302.11024 (2023) - [i33]Samuel Lanthaler, Zongyi Li, Andrew M. Stuart:
The Nonlocal Neural Operator: Universal Approximation. CoRR abs/2304.13221 (2023) - [i32]Pau Batlle, Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart:
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs. CoRR abs/2305.04962 (2023) - [i31]Kaushik Bhattacharya, Nikola B. Kovachki, Aakila Rajan, Andrew M. Stuart, Margaret Trautner:
Learning Homogenization for Elliptic Operators. CoRR abs/2306.12006 (2023) - [i30]Samuel Lanthaler, Andrew M. Stuart:
The curse of dimensionality in operator learning. CoRR abs/2306.15924 (2023) - [i29]Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, Andrew M. Stuart:
Sampling via Gradient Flows in the Space of Probability Measures. CoRR abs/2310.03597 (2023) - [i28]Anshuman Pradhan, Kyra H. Adams, Venkat Chandrasekaran, Zhen Liu, John T. Reager, Andrew M. Stuart, Michael J. Turmon:
Modeling groundwater levels in California's Central Valley by hierarchical Gaussian process and neural network regression. CoRR abs/2310.14555 (2023) - 2022
- [j58]Daniel Zhengyu Huang, Tapio Schneider, Andrew M. Stuart:
Iterated Kalman methodology for inverse problems. J. Comput. Phys. 463: 111262 (2022) - [j57]Tapio Schneider, Andrew M. Stuart, Jinlong Wu:
Ensemble Kalman inversion for sparse learning of dynamical systems from time-averaged data. J. Comput. Phys. 470: 111559 (2022) - [j56]Grigorios A. Pavliotis, Andrew M. Stuart, Urbain Vaes:
Derivative-Free Bayesian Inversion Using Multiscale Dynamics. SIAM J. Appl. Dyn. Syst. 21(1): 284-326 (2022) - [j55]Oliver R. A. Dunbar, Andrew B. Duncan, Andrew M. Stuart, Marie-Therese Wolfram:
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods. SIAM J. Appl. Dyn. Syst. 21(2): 1539-1572 (2022) - [c8]Zongyi Li, Miguel Liu-Schiaffini, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Learning Chaotic Dynamics in Dissipative Systems. NeurIPS 2022 - [d1]Zongyi Li, Miguel Liu-Schiaffini, Nikola Borislavov Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Learning Dissipative Dynamics in Chaotic Systems (Datasets). Zenodo, 2022 - [i27]Maarten V. de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, Andrew M. Stuart:
The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks. CoRR abs/2203.13181 (2022) - [i26]Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, Andrew M. Stuart:
Efficient Derivative-free Bayesian Inference for Large-Scale Inverse Problems. CoRR abs/2204.04386 (2022) - [i25]Kaushik Bhattacharya, Burigede Liu, Andrew M. Stuart, Margaret Trautner:
Learning Markovian Homogenized Models in Viscoelasticity. CoRR abs/2205.14139 (2022) - [i24]Ziming Liu, Andrew M. Stuart, Yixuan Wang:
Second Order Ensemble Langevin Method for Sampling and Inverse Problems. CoRR abs/2208.04506 (2022) - [i23]Edoardo Calvello, Sebastian Reich, Andrew M. Stuart:
Ensemble Kalman Methods: A Mean Field Perspective. CoRR abs/2209.11371 (2022) - 2021
- [j54]Emmet Cleary, Alfredo Garbuno-Inigo, Shiwei Lan, Tapio Schneider, Andrew M. Stuart:
Calibrate, emulate, sample. J. Comput. Phys. 424: 109716 (2021) - [j53]Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart:
Solving and learning nonlinear PDEs with Gaussian processes. J. Comput. Phys. 447: 110668 (2021) - [j52]Nikola B. Kovachki, Andrew M. Stuart:
Continuous Time Analysis of Momentum Methods. J. Mach. Learn. Res. 22: 17:1-17:40 (2021) - [j51]Yifan Chen, Houman Owhadi, Andrew M. Stuart:
Consistency of empirical Bayes and kernel flow for hierarchical parameter estimation. Math. Comput. 90(332): 2527-2578 (2021) - [j50]Nicholas H. Nelsen, Andrew M. Stuart:
The Random Feature Model for Input-Output Maps between Banach Spaces. SIAM J. Sci. Comput. 43(5): A3212-A3243 (2021) - [c7]Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Fourier Neural Operator for Parametric Partial Differential Equations. ICLR 2021 - [i22]Daniel Zhengyu Huang, Tapio Schneider, Andrew M. Stuart:
Unscented Kalman Inversion. CoRR abs/2102.01580 (2021) - [i21]Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart:
Solving and Learning Nonlinear PDEs with Gaussian Processes. CoRR abs/2103.12959 (2021) - [i20]Andrew B. Duncan, Andrew M. Stuart, Marie-Therese Wolfram:
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods. CoRR abs/2104.03384 (2021) - [i19]José Antonio Carrillo, Franca Hoffmann, Andrew M. Stuart, Urbain Vaes:
Consensus Based Sampling. CoRR abs/2106.02519 (2021) - [i18]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Markov Neural Operators for Learning Chaotic Systems. CoRR abs/2106.06898 (2021) - [i17]Matthew E. Levine, Andrew M. Stuart:
A Framework for Machine Learning of Model Error in Dynamical Systems. CoRR abs/2107.06658 (2021) - [i16]Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Neural Operator: Learning Maps Between Function Spaces. CoRR abs/2108.08481 (2021) - [i15]Maarten V. de Hoop, Nikola B. Kovachki, Nicholas H. Nelsen, Andrew M. Stuart:
Convergence Rates for Learning Linear Operators from Noisy Data. CoRR abs/2108.12515 (2021) - 2020
- [j49]Franca Hoffmann, Bamdad Hosseini, Zhi Ren, Andrew M. Stuart:
Consistency of Semi-Supervised Learning Algorithms on Graphs: Probit and One-Hot Methods. J. Mach. Learn. Res. 21: 186:1-186:55 (2020) - [j48]Kit Newton, Qin Li, Andrew M. Stuart:
Diffusive Optical Tomography in the Bayesian Framework. Multiscale Model. Simul. 18(2): 589-611 (2020) - [j47]Alfredo Garbuno-Inigo, Franca Hoffmann, Wuchen Li, Andrew M. Stuart:
Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler. SIAM J. Appl. Dyn. Syst. 19(1): 412-441 (2020) - [j46]Andrew M. Stuart, Marie-Therese Wolfram:
Inverse Optimal Transport. SIAM J. Appl. Math. 80(1): 599-619 (2020) - [j45]Neil K. Chada, Andrew M. Stuart, Xin T. Tong:
Tikhonov Regularization within Ensemble Kalman Inversion. SIAM J. Numer. Anal. 58(2): 1263-1294 (2020) - [j44]Oliver R. A. Dunbar, Matthew M. Dunlop, Charles M. Elliott, Viet Ha Hoang, Andrew M. Stuart:
Reconciling Bayesian and Perimeter Regularization for Binary Inversion. SIAM J. Sci. Comput. 42(4): A1984-A2013 (2020) - [c6]David J. Albers, Melike Sirlanci Tuysuzoglu, Matthew E. Levine, Caroline Der Nigoghossian, Andrew M. Stuart, Jan Claassen, Bruce J. Gluckman, George Hripcsak:
Lessons learned from assimilating knowledge into machine learning to forecast and control glucose in a critical care setting. AMIA 2020 - [c5]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew M. Stuart, Kaushik Bhattacharya, Anima Anandkumar:
Multipole Graph Neural Operator for Parametric Partial Differential Equations. NeurIPS 2020 - [i14]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Neural Operator: Graph Kernel Network for Partial Differential Equations. CoRR abs/2003.03485 (2020) - [i13]Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, Andrew M. Stuart:
Model Reduction and Neural Networks for Parametric PDEs. CoRR abs/2005.03180 (2020) - [i12]Nicholas H. Nelsen, Andrew M. Stuart:
The Random Feature Model for Input-Output Maps between Banach Spaces. CoRR abs/2005.10224 (2020) - [i11]Yifan Chen, Houman Owhadi, Andrew M. Stuart:
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation. CoRR abs/2005.11375 (2020) - [i10]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Multipole Graph Neural Operator for Parametric Partial Differential Equations. CoRR abs/2006.09535 (2020) - [i9]Andrea L. Bertozzi, Bamdad Hosseini, Hao Li, Kevin Miller, Andrew M. Stuart:
Posterior Consistency of Semi-Supervised Regression on Graphs. CoRR abs/2007.12809 (2020) - [i8]Assyr Abdulle, Giacomo Garegnani, Grigorios A. Pavliotis, Andrew M. Stuart, Andrea Zanoni:
Drift Estimation of Multiscale Diffusions Based on Filtered Data. CoRR abs/2009.13457 (2020) - [i7]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Fourier Neural Operator for Parametric Partial Differential Equations. CoRR abs/2010.08895 (2020)
2010 – 2019
- 2019
- [j43]Han Cheng Lie, Andrew M. Stuart, Timothy John Sullivan:
Strong convergence rates of probabilistic integrators for ordinary differential equations. Stat. Comput. 29(6): 1265-1283 (2019) - [j42]Susana N. Gomes, Andrew M. Stuart, Marie-Therese Wolfram:
Parameter Estimation for Macroscopic Pedestrian Dynamics Models from Microscopic Data. SIAM J. Appl. Math. 79(4): 1475-1500 (2019) - [c4]Yiling Qiao, Chang Shi, Chenjian Wang, Hao Li, Matt Haberland, Xiyang Luo, Andrew M. Stuart, Andrea L. Bertozzi:
Uncertainty quantification for semi-supervised multi-class classification in image processing and ego-motion analysis of body-worn videos. Image Processing: Algorithms and Systems 2019 - [i6]Nikola B. Kovachki, Andrew M. Stuart:
Analysis Of Momentum Methods. CoRR abs/1906.04285 (2019) - [i5]Franca Hoffmann, Bamdad Hosseini, Zhi Ren, Andrew M. Stuart:
Consistency of semi-supervised learning algorithms on graphs: Probit and one-hot methods. CoRR abs/1906.07658 (2019) - 2018
- [j41]David J. Albers, Matthew E. Levine, Andrew M. Stuart, Lena Mamykina, Bruce J. Gluckman, George Hripcsak:
Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype. J. Am. Medical Informatics Assoc. 25(10): 1392-1401 (2018) - [j40]Matthew M. Dunlop, Mark A. Girolami, Andrew M. Stuart, Aretha L. Teckentrup:
How Deep Are Deep Gaussian Processes? J. Mach. Learn. Res. 19: 54:1-54:46 (2018) - [j39]Andrea L. Bertozzi, Xiyang Luo, Andrew M. Stuart, Konstantinos C. Zygalakis:
Uncertainty Quantification in Graph-Based Classification of High Dimensional Data. SIAM/ASA J. Uncertain. Quantification 6(2): 568-595 (2018) - [j38]Andrew M. Stuart, Aretha L. Teckentrup:
Posterior consistency for Gaussian process approximations of Bayesian posterior distributions. Math. Comput. 87(310): 721-753 (2018) - [c3]David J. Albers, Matthew E. Levine, Andrew M. Stuart, Jan Claassen, Bruce J. Gluckman, George Hripcsak:
Using mechanistic machine learning to forecast glucose and infer physiologic phenotypes in the ICU: what is possible and what are the challenges. AMIA 2018 - [i4]Matthew M. Dunlop, Dejan Slepcev, Andrew M. Stuart, Matthew Thorpe:
Large Data and Zero Noise Limits of Graph-Based Semi-Supervised Learning Algorithms. CoRR abs/1805.09450 (2018) - [i3]Nikola B. Kovachki, Andrew M. Stuart:
Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks. CoRR abs/1808.03620 (2018) - 2017
- [j37]Alexandros Beskos, Mark A. Girolami, Shiwei Lan, Patrick E. Farrell, Andrew M. Stuart:
Geometric MCMC for infinite-dimensional inverse problems. J. Comput. Phys. 335: 327-351 (2017) - [j36]Robert Scheichl, Andrew M. Stuart, Aretha L. Teckentrup:
Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems. SIAM/ASA J. Uncertain. Quantification 5(1): 493-518 (2017) - [j35]Yulong Lu, Andrew M. Stuart, Hendrik Weber:
Gaussian Approximations for Probability Measures on Rd. SIAM/ASA J. Uncertain. Quantification 5(1): 1136-1165 (2017) - [j34]Patrick R. Conrad, Mark A. Girolami, Simo Särkkä, Andrew M. Stuart, Konstantinos Zygalakis:
Statistical analysis of differential equations: introducing probability measures on numerical solutions. Stat. Comput. 27(4): 1065-1082 (2017) - [j33]Matthew M. Dunlop, Marco A. Iglesias, Andrew M. Stuart:
Hierarchical Bayesian level set inversion. Stat. Comput. 27(6): 1555-1584 (2017) - [j32]Yulong Lu, Andrew M. Stuart, Hendrik Weber:
Gaussian Approximations for Transition Paths in Brownian Dynamics. SIAM J. Math. Anal. 49(4): 3005-3047 (2017) - [j31]Claudia Schillings, Andrew M. Stuart:
Analysis of the Ensemble Kalman Filter for Inverse Problems. SIAM J. Numer. Anal. 55(3): 1264-1290 (2017) - [c2]David J. Albers, Matthew E. Levine, Andrew M. Stuart, Bruce J. Gluckman, George Hripcsak:
Why predicting postprandial glucose using self-monitoring data is difficult. AMIA 2017 - [i2]Andrea L. Bertozzi, Xiyang Luo, Andrew M. Stuart, Konstantinos C. Zygalakis:
Uncertainty Quantification in the Classification of High Dimensional Data. CoRR abs/1703.08816 (2017) - 2016
- [c1]David J. Albers, Matthew E. Levine, Andrew M. Stuart, George Hripcsak, Lena Mamykina:
Using data assimilation to forecast post-meal glucose for patients with type 2 diabetes. AMIA 2016 - 2015
- [j30]Andrew B. Duncan, Charles M. Elliott, Grigorios A. Pavliotis, Andrew M. Stuart:
A Multiscale Analysis of Diffusions on Rapidly Varying Surfaces. J. Nonlinear Sci. 25(2): 389-449 (2015) - [j29]Daniel Sanz-Alonso, Andrew M. Stuart:
Long-Time Asymptotics of the Filtering Distribution for Partially Observed Chaotic Dynamical Systems. SIAM/ASA J. Uncertain. Quantification 3(1): 1200-1220 (2015) - [j28]Alexandros Beskos, Ajay Jasra, Ege A. Muzaffer, Andrew M. Stuart:
Sequential Monte Carlo methods for Bayesian elliptic inverse problems. Stat. Comput. 25(4): 727-737 (2015) - [j27]Francis J. Pinski, Gideon Simpson, Andrew M. Stuart, Hendrik Weber:
Kullback-Leibler Approximation for Probability Measures on Infinite Dimensional Spaces. SIAM J. Math. Anal. 47(6): 4091-4122 (2015) - [j26]Francis J. Pinski, Gideon Simpson, Andrew M. Stuart, Hendrik Weber:
Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions. SIAM J. Sci. Comput. 37(6) (2015) - 2014
- [j25]Sergios Agapiou, Johnathan M. Bardsley, Omiros Papaspiliopoulos, Andrew M. Stuart:
Analysis of the Gibbs Sampler for Hierarchical Inverse Problems. SIAM/ASA J. Uncertain. Quantification 2(1): 511-544 (2014) - 2011
- [j24]M. Dashti, Andrew M. Stuart:
Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem. SIAM J. Numer. Anal. 49(6): 2524-2542 (2011) - [i1]Kody J. H. Law, Andrew M. Stuart:
Evaluating Data Assimilation Algorithms. CoRR abs/1107.4118 (2011) - 2010
- [j23]Andrew M. Stuart:
Inverse problems: A Bayesian perspective. Acta Numer. 19: 451-559 (2010) - [j22]S. L. Cotter, M. Dashti, Andrew M. Stuart:
Approximation of Bayesian Inverse Problems for PDEs. SIAM J. Numer. Anal. 48(1): 322-345 (2010) - [j21]Jonathan C. Mattingly, Andrew M. Stuart, Michael V. Tretyakov:
Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations. SIAM J. Numer. Anal. 48(2): 552-577 (2010)
2000 – 2009
- 2009
- [j20]Grigorios A. Pavliotis, Andrew M. Stuart, Konstantinos C. Zygalakis:
Calculating effective diffusivities in the limit of vanishing molecular diffusion. J. Comput. Phys. 228(4): 1030-1055 (2009) - [j19]Yvo Pokern, Andrew M. Stuart, Eric Vanden-Eijnden:
Remarks on Drift Estimation for Diffusion Processes. Multiscale Model. Simul. 8(1): 69-95 (2009) - 2006
- [j18]Dwight Barkley, Ioannis G. Kevrekidis, Andrew M. Stuart:
The Moment Map: Nonlinear Dynamics of Density Evolution via a Few Moments. SIAM J. Appl. Dyn. Syst. 5(3): 403-434 (2006) - 2005
- [j17]Grigorios A. Pavliotis, Andrew M. Stuart:
Analysis of White Noise Limits for Stochastic Systems with Two Fast Relaxation Times. Multiscale Model. Simul. 4(1): 1-35 (2005) - 2003
- [j16]Desmond J. Higham, Xuerong Mao, Andrew M. Stuart:
Exponential Mean-Square Stability of Numerical Solutions to Stochastic Differential Equations. LMS J. Comput. Math. 6: 297-313 (2003) - [j15]Grigorios A. Pavliotis, Andrew M. Stuart:
White Noise Limits for Inertial Particles in a Random Field. Multiscale Model. Simul. 1(4): 527-553 (2003) - 2002
- [j14]Donald J. Estep, Andrew M. Stuart:
The dynamical behavior of the discontinuous Galerkin method and related difference schemes. Math. Comput. 71(239): 1075-1103 (2002) - [j13]Desmond J. Higham, Xuerong Mao, Andrew M. Stuart:
Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations. SIAM J. Numer. Anal. 40(3): 1041-1063 (2002) - 2001
- [j12]Begoña Cano, Andrew M. Stuart, Endre Süli, J. O. Warren:
Stiff Oscillatory Systems, Delta Jumps and White Noise. Found. Comput. Math. 1(1): 69-100 (2001) - 2000
- [j11]Tony Shardlow, Andrew M. Stuart:
A Perturbation Theory for Ergodic Markov Chains and Application to Numerical Approximations. SIAM J. Numer. Anal. 37(4): 1120-1137 (2000)
1990 – 1999
- 1998
- [j10]Martin J. Gander, Andrew M. Stuart:
Space-Time Continuous Analysis of Waveform Relaxation for the Heat Equation. SIAM J. Sci. Comput. 19(6): 2014-2031 (1998) - [j9]Chris J. Budd, George P. Koomullil, Andrew M. Stuart:
On the Solution of Convection-Diffusion Boundary Value Problems Using Equidistributed Grids. SIAM J. Sci. Comput. 20(2): 591-618 (1998) - 1997
- [j8]Morten Bjørhus, Andrew M. Stuart:
Waveform relaxation as a dynamical system. Math. Comput. 66(219): 1101-1117 (1997) - [j7]Andrew M. Stuart:
Probabilistic and deterministic convergence proofs for software for initial value problems. Numer. Algorithms 14(1-3): 227-260 (1997) - 1994
- [j6]Chris J. Budd, J. William Dold, Andrew M. Stuart:
Blow-up in a System of Partial Differential Equations with Conserved First Integral. Part II: Problems with Convection. SIAM J. Appl. Math. 54(3): 610-640 (1994) - [j5]Andrew M. Stuart, A. R. Humphries:
Model Problems in Numerical Stability Theory for Initial Value Problems. SIAM Rev. 36(2): 226-257 (1994) - 1993
- [j4]Chris J. Budd, J. William Dold, Andrew M. Stuart:
Blowup in a Partial Differential Equation with Conserved First Integral. SIAM J. Appl. Math. 53(3): 718-742 (1993) - [j3]Fengshan Bai, Alastair Spence, Andrew M. Stuart:
The Numerical Computation of Heteroclinic Connections in Systems of Gradient Partial Differential Equations. SIAM J. Appl. Math. 53(3): 743-769 (1993) - 1991
- [j2]Andrew M. Stuart, A. T. Peplow:
The Dynamics of the Theta Method. SIAM J. Sci. Comput. 12(6): 1351-1372 (1991)
1980 – 1989
- 1989
- [j1]Andrew M. Stuart:
Nonlinear Instability in Dissipative Finite Difference Schemes. SIAM Rev. 31(2): 191-220 (1989)
Coauthor Index
aka: Nikola Borislavov Kovachki
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:22 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint