default search action
Lukas Frickenstein
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c12]Lukas Frickenstein, Pierpaolo Morì, Shambhavi Balamuthu Sampath, Moritz Thoma, Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Christian Unger, Claudio Passerone, Walter Stechele:
Pruning as a Binarization Technique. CVPR Workshops 2024: 2131-2140 - [c11]Pierpaolo Morì, Moritz Thoma, Lukas Frickenstein, Shambhavi Balamuthu Sampath, Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Walter Stechele, Daniel Mueller-Gritschneder, Claudio Passerone:
MATAR: Multi-Quantization-Aware Training for Accurate and Fast Hardware Retargeting. DATE 2024: 1-6 - [c10]Pierpaolo Morì, Lukas Frickenstein, Shambhavi Balamuthu Sampath, Moritz Thoma, Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Christian Unger, Walter Stechele, Daniel Mueller-Gritschneder, Claudio Passerone:
Wino Vidi Vici: Conquering Numerical Instability of 8-bit Winograd Convolution for Accurate Inference Acceleration on Edge. WACV 2024: 53-62 - 2023
- [c9]Pierpaolo Morì, Shambhavi Balamuthu Sampath, Lukas Frickenstein, Manoj Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Walter Stechele, Claudio Passerone:
WinoTrain: Winograd-Aware Training for Accurate Full 8-bit Convolution Acceleration. DAC 2023: 1-6 - [c8]Lukas Frickenstein, Shambhavi Balamuthu Sampath, Pierpaolo Morì, Manoj Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Christian Unger, Claudio Passerone, Walter Stechele:
Adversarial Robustness of Multi-bit Convolutional Neural Networks. IntelliSys (3) 2023: 157-174 - 2022
- [c7]Pierpaolo Morì, Manoj Rohit Vemparala, Nael Fasfous, Saptarshi Mitra, Sreetama Sarkar, Alexander Frickenstein, Lukas Frickenstein, Domenik Helms, Naveen Shankar Nagaraja, Walter Stechele, Claudio Passerone:
Accelerating and pruning CNNs for semantic segmentation on FPGA. DAC 2022: 145-150 - [c6]Nael Fasfous, Lukas Frickenstein, Michael Neumeier, Manoj Rohit Vemparala, Alexander Frickenstein, Emanuele Valpreda, Maurizio Martina, Walter Stechele:
Mind the Scaling Factors: Resilience Analysis of Quantized Adversarially Robust CNNs. DATE 2022: 706-711 - 2021
- [c5]Manoj Rohit Vemparala, Nael Fasfous, Lukas Frickenstein, Alexander Frickenstein, Anmol Singh, Driton Salihu, Christian Unger, Naveen Shankar Nagaraja, Walter Stechele:
Hardware-Aware Mixed-Precision Neural Networks using In-Train Quantization. BMVC 2021: 60 - [c4]Manoj Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Sreetama Sarkar, Qi Zhao, Sabine Kuhn, Lukas Frickenstein, Anmol Singh, Christian Unger, Naveen Shankar Nagaraja, Christian Wressnegger, Walter Stechele:
Adversarial Robust Model Compression Using In-Train Pruning. CVPR Workshops 2021: 66-75 - [c3]Manoj Rohit Vemparala, Alexander Frickenstein, Nael Fasfous, Lukas Frickenstein, Qi Zhao, Sabine Kuhn, Daniel Ehrhardt, Yuankai Wu, Christian Unger, Naveen Shankar Nagaraja, Walter Stechele:
BreakingBED: Breaking Binary and Efficient Deep Neural Networks by Adversarial Attacks. IntelliSys (1) 2021: 148-167 - [c2]Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Lukas Frickenstein, Mohamed Badawy, Walter Stechele:
BinaryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and Positioning Predictor on Edge Devices. IPDPS Workshops 2021: 108-115 - [i3]Manoj Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Mhd Ali Moraly, Aquib Jamal, Lukas Frickenstein, Christian Unger, Naveen Shankar Nagaraja, Walter Stechele:
L2PF - Learning to Prune Faster. CoRR abs/2101.02663 (2021) - [i2]Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Lukas Frickenstein, Walter Stechele:
BinaryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and Positioning Predictor on Edge Devices. CoRR abs/2102.03456 (2021) - [i1]Manoj Rohit Vemparala, Alexander Frickenstein, Nael Fasfous, Lukas Frickenstein, Qi Zhao, Sabine Kuhn, Daniel Ehrhardt, Yuankai Wu, Christian Unger, Naveen Shankar Nagaraja, Walter Stechele:
BreakingBED - Breaking Binary and Efficient Deep Neural Networks by Adversarial Attacks. CoRR abs/2103.08031 (2021) - 2020
- [c1]Manoj Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Mhd Ali Moraly, Aquib Jamal, Lukas Frickenstein, Christian Unger, Naveen Shankar Nagaraja, Walter Stechele:
L2PF - Learning to Prune Faster. CVIP (3) 2020: 249-261
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-17 21:52 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint