default search action
Yue M. Lu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2007
- [b1]Yue M. Lu:
Multidimensional Geometrical Signal Representation: Constructions and Applications. University of Illinois Urbana-Champaign, USA, 2007
Journal Articles
- 2023
- [j30]Hong Hu, Yue M. Lu:
Universality Laws for High-Dimensional Learning With Random Features. IEEE Trans. Inf. Theory 69(3): 1932-1964 (2023) - 2022
- [j29]Hong Hu, Yue M. Lu:
SLOPE for Sparse Linear Regression: Asymptotics and Optimal Regularization. IEEE Trans. Inf. Theory 68(11): 7627-7664 (2022) - 2021
- [j28]Oussama Dhifallah, Yue M. Lu:
Phase Transitions in Transfer Learning for High-Dimensional Perceptrons. Entropy 23(4): 400 (2021) - [j27]Yue M. Lu:
Householder Dice: A Matrix-Free Algorithm for Simulating Dynamics on Gaussian and Random Orthogonal Ensembles. IEEE Trans. Inf. Theory 67(12): 8264-8272 (2021) - 2020
- [j26]Hong Hu, Yue M. Lu:
The Limiting Poisson Law of Massive MIMO Detection With Box Relaxation. IEEE J. Sel. Areas Inf. Theory 1(3): 695-704 (2020) - [j25]Lina Chen, Yue M. Lu, Minshu Qin, Fa Liu, Liang Huang, Jing Wang, Hui Xu, Na Li, Guobao Huang, Zhihui Luo, Baodong Zheng:
Preparation of "Ion-Imprinting" Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions. Sensors 20(4): 995 (2020) - 2019
- [j24]Wangyu Luo, Wael Alghamdi, Yue M. Lu:
Optimal Spectral Initialization for Signal Recovery With Applications to Phase Retrieval. IEEE Trans. Signal Process. 67(9): 2347-2356 (2019) - [j23]Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu, Michael Elad:
MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance. IEEE Trans. Signal Process. 67(17): 4597-4610 (2019) - [j22]Gilles Baechler, Miranda Krekovic, Juri Ranieri, Amina Chebira, Yue M. Lu, Martin Vetterli:
Super Resolution Phase Retrieval for Sparse Signals. IEEE Trans. Signal Process. 67(18): 4839-4854 (2019) - [j21]Yuejie Chi, Yue M. Lu, Yuxin Chen:
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview. IEEE Trans. Signal Process. 67(20): 5239-5269 (2019) - 2018
- [j20]Chuang Wang, Yonina C. Eldar, Yue M. Lu:
Subspace Estimation From Incomplete Observations: A High-Dimensional Analysis. IEEE J. Sel. Top. Signal Process. 12(6): 1240-1252 (2018) - [j19]Laura Balzano, Yuejie Chi, Yue M. Lu:
Streaming PCA and Subspace Tracking: The Missing Data Case. Proc. IEEE 106(8): 1293-1310 (2018) - [j18]Yue M. Lu, Jon Onativia, Pier Luigi Dragotti:
Sparse Representation in Fourier and Local Bases Using ProSparse: A Probabilistic Analysis. IEEE Trans. Inf. Theory 64(4): 2639-2647 (2018) - 2017
- [j17]Stanley H. Chan, Todd E. Zickler, Yue M. Lu:
Understanding Symmetric Smoothing Filters: A Gaussian Mixture Model Perspective. IEEE Trans. Image Process. 26(11): 5107-5121 (2017) - 2016
- [j16]Chenhui Hu, Jorge Sepulcre, Keith A. Johnson, Georges El Fakhri, Yue M. Lu, Quanzheng Li:
Matched signal detection on graphs: Theory and application to brain imaging data classification. NeuroImage 125: 587-600 (2016) - [j15]Filip Sroubek, Jan Kamenický, Yue M. Lu:
Decomposition of Space-Variant Blur in Image Deconvolution. IEEE Signal Process. Lett. 23(3): 346-350 (2016) - [j14]Yuejie Chi, Yue M. Lu:
Kaczmarz Method for Solving Quadratic Equations. IEEE Signal Process. Lett. 23(9): 1183-1187 (2016) - [j13]Ivan Dokmanic, Yue M. Lu:
Sampling Sparse Signals on the Sphere: Algorithms and Applications. IEEE Trans. Signal Process. 64(1): 189-202 (2016) - 2014
- [j12]Stanley H. Chan, Todd E. Zickler, Yue M. Lu:
Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering. IEEE Trans. Image Process. 23(8): 3711-3725 (2014) - [j11]Pier Luigi Dragotti, Yue M. Lu:
On Sparse Representation in Fourier and Local Bases. IEEE Trans. Inf. Theory 60(12): 7888-7899 (2014) - 2013
- [j10]Ameya Agaskar, Yue M. Lu:
A Spectral Graph Uncertainty Principle. IEEE Trans. Inf. Theory 59(7): 4338-4356 (2013) - 2012
- [j9]Minh N. Do, Yue M. Lu:
Multidimensional Filter Banks and Multiscale Geometric Representations. Found. Trends Signal Process. 5(3): 157-264 (2012) - [j8]Feng Yang, Yue M. Lu, Luciano Sbaiz, Martin Vetterli:
Bits From Photons: Oversampled Image Acquisition Using Binary Poisson Statistics. IEEE Trans. Image Process. 21(4): 1421-1436 (2012) - 2010
- [j7]Yue M. Lu, Mina Karzand, Martin Vetterli:
Demosaicking by Alternating Projections: Theory and Fast One-Step Implementation. IEEE Trans. Image Process. 19(8): 2085-2098 (2010) - [j6]Ali Hormati, Olivier Roy, Yue M. Lu, Martin Vetterli:
Distributed sampling of signals linked by sparse filtering: theory and applications. IEEE Trans. Signal Process. 58(3): 1095-1109 (2010) - 2009
- [j5]Yue M. Lu, Minh N. Do, Richard S. Laugesen:
A computable fourier condition generating alias-free sampling lattices. IEEE Trans. Signal Process. 57(5): 1768-1782 (2009) - 2008
- [j4]Yue M. Lu, Minh N. Do:
Sampling Signals from a Union of Subspaces. IEEE Signal Process. Mag. 25(2): 41-47 (2008) - [j3]Yue M. Lu, Minh N. Do:
A Mapping-Based Design for Nonsubsampled Hourglass Filter Banks in Arbitrary Dimensions. IEEE Trans. Signal Process. 56(4): 1466-1478 (2008) - [j2]Yue M. Lu, Minh N. Do:
A Theory for Sampling Signals From a Union of Subspaces. IEEE Trans. Signal Process. 56(6): 2334-2345 (2008) - 2007
- [j1]Yue M. Lu, Minh N. Do:
Multidimensional Directional Filter Banks and Surfacelets. IEEE Trans. Image Process. 16(4): 918-931 (2007)
Conference and Workshop Papers
- 2024
- [c61]Hugo Cui, Luca Pesce, Yatin Dandi, Florent Krzakala, Yue M. Lu, Lenka Zdeborová, Bruno Loureiro:
Asymptotics of feature learning in two-layer networks after one gradient-step. ICML 2024 - [c60]Burak Çakmak, Yue M. Lu, Manfred Opper:
A Convergence Analysis of Approximate Message Passing with Non-Separable Functions and Applications to Multi-Class Classification. ISIT 2024: 747-752 - 2023
- [c59]Yue M. Lu:
Keynote Speaker #2 : Exploring and exploiting the universality phenomenon in high-dimensional estimation and learning. ICCAIS 2023: 1 - 2021
- [c58]Oussama Dhifallah, Yue M. Lu:
On the Inherent Regularization Effects of Noise Injection During Training. ICML 2021: 2665-2675 - [c57]Antoine Maillard, Florent Krzakala, Yue M. Lu, Lenka Zdeborová:
Construction of optimal spectral methods in phase retrieval. MSML 2021: 693-720 - 2020
- [c56]Benjamin Aubin, Florent Krzakala, Yue M. Lu, Lenka Zdeborová:
Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization. NeurIPS 2020 - 2019
- [c55]Carlo Lucibello, Luca Saglietti, Yue M. Lu:
Generalized Approximate Survey Propagation for High-Dimensional Estimation. ICML 2019: 4173-4182 - [c54]Hong Hu, Yue M. Lu:
Asymptotics and Optimal Designs of SLOPE for Sparse Linear Regression. ISIT 2019: 375-379 - [c53]Chuang Wang, Hong Hu, Yue M. Lu:
A Solvable High-Dimensional Model of GAN. NeurIPS 2019: 13759-13768 - 2018
- [c52]Hong Hu, Yue M. Lu:
Online Power Iteration For Subspace Estimation Under Incomplete Observations: Limiting Dynamics And Phase Transitions. SSP 2018: 851-855 - 2017
- [c51]Oussama Dhifallah, Christos Thrampoulidis, Yue M. Lu:
Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. Allerton 2017: 1071-1077 - [c50]Oussama Dhifallah, Yue M. Lu:
Fundamental limits of phasemax for phase retrieval: A replica analysis. CAMSAP 2017: 1-5 - [c49]Yanting Ma, Yue M. Lu, Dror Baron:
Multiprocessor approximate message passing with column-wise partitioning. ICASSP 2017: 4765-4769 - [c48]Renan A. Rojas, Wangyu Luo, Víctor Murray, Yue M. Lu:
Learning optimal parameters for binary sensing image reconstruction algorithms. ICIP 2017: 2791-2795 - [c47]Yue M. Lu, Gen Li:
Spectral initialization for nonconvex estimation: High-dimensional limit and phase transitions. ISIT 2017: 3015-3019 - [c46]Chuang Wang, Yue M. Lu:
The Scaling Limit of High-Dimensional Online Independent Component Analysis. NIPS 2017: 6638-6647 - 2016
- [c45]Jon Onativia, Yue M. Lu, Pier Luigi Dragotti:
Prosparse denoise: Prony's based sparse pattern recovery in the presence of noise. ICASSP 2016: 4084-4088 - [c44]Chuang Wang, Yue M. Lu:
Online learning for sparse PCA in high dimensions: Exact dynamics and phase transitions. ITW 2016: 186-190 - [c43]Ariana Minot, Yue M. Lu, Na Li:
A parallel primal-dual interior-point method for DC optimal power flow. PSCC 2016: 1-7 - 2015
- [c42]Gen Li, Yuantao Gu, Yue M. Lu:
Phase retrieval using iterative projections: Dynamics in the large systems limit. Allerton 2015: 1114-1118 - [c41]Yuanxin Li, Yingsheng He, Yuejie Chi, Yue M. Lu:
Blind calibration of multi-channel samplers using sparse recovery. CAMSAP 2015: 33-36 - [c40]Zahra Sadeghipoor, Yue M. Lu, Sabine Süsstrunk:
Gradient-based correction of chromatic aberration in the joint acquisition of color and near-infrared images. Digital Photography 2015: 94040F - [c39]Zahra Sadeghipoor, Yue M. Lu, Erick Méndez, Sabine Süsstrunk:
Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging. EUSIPCO 2015: 2336-2340 - [c38]Ivan Dokmanic, Yue M. Lu:
Sampling spherical finite rate of innovation signals. ICASSP 2015: 5962-5966 - [c37]Jon Onativia, Yue M. Lu, Pier Luigi Dragotti:
Sparsity pattern recovery using FRI methods. ICASSP 2015: 5967-5971 - [c36]Stanley H. Chan, Todd E. Zickler, Yue M. Lu:
Understanding symmetric smoothing filters via Gaussian mixtures. ICIP 2015: 2500-2504 - 2014
- [c35]Ameya Agaskar, Yue M. Lu:
Optimal hypothesis testing with combinatorial structure: Detecting random walks on graphs. ACSSC 2014: 733-737 - [c34]Ariana Minot, Yue M. Lu:
Separation of interleaved Markov chains. ACSSC 2014: 1757-1761 - [c33]Stanley H. Chan, Yue M. Lu:
Efficient image reconstruction for gigapixel quantum image sensors. GlobalSIP 2014: 312-316 - [c32]Ameya Agaskar, Chuang Wang, Yue M. Lu:
Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities. GlobalSIP 2014: 389-393 - [c31]Jon Onativia, Yue M. Lu, Pier Luigi Dragoni:
Finite dimensional FRI. ICASSP 2014: 1808-1812 - 2013
- [c30]Yue M. Lu:
Adaptive sensing and inference for single-photon imaging. CISS 2013: 1-6 - [c29]Yue M. Lu:
A framework for adaptive parameter estimation with finite memory. GlobalSIP 2013: 213-216 - [c28]Ameya Agaskar, Yue M. Lu:
ALARM: A logistic auto-regressive model for binary processes on networks. GlobalSIP 2013: 305-308 - [c27]Stanley H. Chan, Todd E. Zickler, Yue M. Lu:
Fast non-local filtering by random sampling: It works, especially for large images. ICASSP 2013: 1603-1607 - [c26]Zahra Sadeghipoor, Yue M. Lu, Sabine Süsstrunk:
A novel compressive sensing approach to simultaneously acquire color and near-infrared images on a single sensor. ICASSP 2013: 1646-1650 - [c25]Ameya Agaskar, Yue M. Lu:
Detecting randomwalks hidden in noise: Phase transition on large graphs. ICASSP 2013: 6377-6381 - [c24]Chenhui Hu, Lin Cheng, Jorge Sepulcre, Georges El Fakhri, Yue M. Lu, Quanzheng Li:
Matched Signal Detection on Graphs: Theory and Application to Brain Network Classification. IPMI 2013: 1-12 - [c23]Chenhui Hu, Lin Cheng, Jorge Sepulcre, Georges El Fakhri, Yue M. Lu, Quanzheng Li:
A graph theoretical regression model for brain connectivity learning of Alzheimer'S disease. ISBI 2013: 616-619 - 2012
- [c22]Zahra Sadeghipoor, Yue M. Lu, Sabine Süsstrunk:
Optimum spectral sensitivity functions for single sensor color imaging. Digital Photography 2012: 829904 - [c21]Ameya Agaskar, Yue M. Lu:
Uncertainty principles for signals defined on graphs: Bounds and characterizations. ICASSP 2012: 3493-3496 - [c20]Ying Xiong, Yue M. Lu:
Blind estimation and low-rate sampling of sparse mimo systems with common support. ICASSP 2012: 3893-3896 - [c19]Chenhui Hu, Lin Cheng, Yue M. Lu:
Graph-based regularization for color image demosaicking. ICIP 2012: 2769-2772 - 2011
- [c18]Yue M. Lu, Pier Luigi Dragotti, Martin Vetterli:
Localization of diffusive sources using spatiotemporal measurements. Allerton 2011: 1072-1076 - [c17]Ivan Dokmanic, Yue M. Lu, Martin Vetterli:
Can one hear the shape of a room: The 2-D polygonal case. ICASSP 2011: 321-324 - [c16]Juri Ranieri, Amina Chebira, Yue M. Lu, Martin Vetterli:
Sampling and reconstructing diffusion fields with localized sources. ICASSP 2011: 4016-4019 - [c15]Yue M. Lu, Martin Vetterli:
Sparse spectral factorization: Unicity and reconstruction algorithms. ICASSP 2011: 5976-5979 - [c14]Zahra Sadeghipoor, Yue M. Lu, Sabine Süsstrunk:
Correlation-based joint acquisition and demosaicing of visible and near-infrared images. ICIP 2011: 3165-3168 - 2010
- [c13]Feng Yang, Yue M. Lu, Luciano Sbaiz, Martin Vetterli:
An optimal algorithm for reconstructing images from binary measurements. Computational Imaging 2010: 75330 - [c12]Martin McCormick, Yue M. Lu, Martin Vetterli:
Learning sparse systems at sub-Nyquist rates: A frequency-domain approach. ICASSP 2010: 4018-4021 - 2009
- [c11]Yue M. Lu, Mina Karzand, Martin Vetterli:
Iterative demosaicking accelerated: theory and fast noniterative implementations. Computational Imaging 2009: 72460 - [c10]Yue M. Lu, Martin Vetterli:
Optimal color filter array design: quantitative conditions and an efficient search procedure. Digital Photography 2009: 725009 - [c9]Yue M. Lu, Martin Vetterli:
Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks. ICASSP 2009: 2249-2252 - [c8]Olivier Roy, Ali Hormati, Yue M. Lu, Martin Vetterli:
Distributed sensing of signals linked by sparse filtering. ICASSP 2009: 2409-2412 - [c7]Yue M. Lu, Clément Fredembach, Martin Vetterli, Sabine Süsstrunk:
Designing color filter arrays for the joint capture of visible and near-infrared images. ICIP 2009: 3797-3800 - 2008
- [c6]Guillermo Barrenetxea, François Ingelrest, Yue M. Lu, Martin Vetterli:
Assessing the challenges of environmental signal processing through the sensorscope project. ICASSP 2008: 5149-5152 - 2007
- [c5]Nickolaus Mueller, Yue M. Lu, Minh N. Do:
Image interpolation using multiscale geometric representations. Computational Imaging 2007: 64980A - [c4]Yue M. Lu, Minh N. Do:
Finding Optimal Integral Sampling Lattices for a given Frequency Support in Multidimensions. ICIP (2) 2007: 165-168 - 2006
- [c3]Yue M. Lu, Minh N. Do:
A New Contourlet Transform with Sharp Frequency Localization. ICIP 2006: 1629-1632 - 2005
- [c2]Yue M. Lu, Minh N. Do:
The finer directional wavelet transform [image processing applications]. ICASSP (4) 2005: 573-576 - 2004
- [c1]Yue M. Lu, Minh N. Do:
A geometrical approach to sampling signals with finite rate of innovation. ICASSP (2) 2004: 565-568
Informal and Other Publications
- 2024
- [i43]Hugo Cui, Luca Pesce, Yatin Dandi, Florent Krzakala, Yue M. Lu, Lenka Zdeborová, Bruno Loureiro:
Asymptotics of feature learning in two-layer networks after one gradient-step. CoRR abs/2402.04980 (2024) - [i42]Burak Çakmak, Yue M. Lu, Manfred Opper:
A Convergence Analysis of Approximate Message Passing with Non-Separable Functions and Applications to Multi-Class Classification. CoRR abs/2402.08676 (2024) - [i41]Hong Hu, Yue M. Lu, Theodor Misiakiewicz:
Asymptotics of Random Feature Regression Beyond the Linear Scaling Regime. CoRR abs/2403.08160 (2024) - [i40]Yue M. Lu, Mary I. Letey, Jacob A. Zavatone-Veth, Anindita Maiti, Cengiz Pehlevan:
Asymptotic theory of in-context learning by linear attention. CoRR abs/2405.11751 (2024) - 2022
- [i39]Burak Çakmak, Yue M. Lu, Manfred Opper:
Analysis of Random Sequential Message Passing Algorithms for Approximate Inference. CoRR abs/2202.08198 (2022) - [i38]Hong Hu, Yue M. Lu:
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime. CoRR abs/2205.06798 (2022) - [i37]Rishabh Dudeja, Subhabrata Sen, Yue M. Lu:
Spectral Universality of Regularized Linear Regression with Nearly Deterministic Sensing Matrices. CoRR abs/2208.02753 (2022) - 2021
- [i36]Oussama Dhifallah, Yue M. Lu:
Phase Transitions in Transfer Learning for High-Dimensional Perceptrons. CoRR abs/2101.01918 (2021) - [i35]Yue M. Lu:
Householder Dice: A Matrix-Free Algorithm for Simulating Dynamics on Gaussian and Random Orthogonal Ensembles. CoRR abs/2101.07464 (2021) - [i34]Oussama Dhifallah, Yue M. Lu:
On the Inherent Regularization Effects of Noise Injection During Training. CoRR abs/2102.07379 (2021) - 2020
- [i33]Francesca Mignacco, Florent Krzakala, Yue M. Lu, Lenka Zdeborová:
The role of regularization in classification of high-dimensional noisy Gaussian mixture. CoRR abs/2002.11544 (2020) - [i32]Benjamin Aubin, Florent Krzakala, Yue M. Lu, Lenka Zdeborová:
Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization. CoRR abs/2006.06560 (2020) - [i31]Hong Hu, Yue M. Lu:
The Limiting Poisson Law of Massive MIMO Detection with Box Relaxation. CoRR abs/2006.08416 (2020) - [i30]Oussama Dhifallah, Yue M. Lu:
A Precise Performance Analysis of Learning with Random Features. CoRR abs/2008.11904 (2020) - [i29]Hong Hu, Yue M. Lu:
Universality Laws for High-Dimensional Learning with Random Features. CoRR abs/2009.07669 (2020) - [i28]Antoine Maillard, Florent Krzakala, Yue M. Lu, Lenka Zdeborová:
Construction of optimal spectral methods in phase retrieval. CoRR abs/2012.04524 (2020) - 2019
- [i27]Hong Hu, Yue M. Lu:
Asymptotics and Optimal Designs of SLOPE for Sparse Linear Regression. CoRR abs/1903.11582 (2019) - [i26]Luca Saglietti, Yue M. Lu, Carlo Lucibello:
Generalized Approximate Survey Propagation for High-Dimensional Estimation. CoRR abs/1905.05313 (2019) - 2018
- [i25]Chuang Wang, Yonina C. Eldar, Yue M. Lu:
Subspace Estimation from Incomplete Observations: A High-Dimensional Analysis. CoRR abs/1805.06834 (2018) - [i24]Chuang Wang, Hong Hu, Yue M. Lu:
A Solvable High-Dimensional Model of GAN. CoRR abs/1805.08349 (2018) - [i23]Oussama Dhifallah, Christos Thrampoulidis, Yue M. Lu:
Phase Retrieval via Polytope Optimization: Geometry, Phase Transitions, and New Algorithms. CoRR abs/1805.09555 (2018) - [i22]Laura Balzano, Yuejie Chi, Yue M. Lu:
Streaming PCA and Subspace Tracking: The Missing Data Case. CoRR abs/1806.04609 (2018) - [i21]Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu, Michael Elad:
Improving Pursuit Algorithms Using Stochastic Resonance. CoRR abs/1806.10171 (2018) - [i20]Gilles Baechler, Miranda Krekovic, Juri Ranieri, Amina Chebira, Yue M. Lu, Martin Vetterli:
Super Resolution Phase Retrieval for Sparse Signals. CoRR abs/1808.01961 (2018) - [i19]Yuejie Chi, Yue M. Lu, Yuxin Chen:
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview. CoRR abs/1809.09573 (2018) - [i18]Wangyu Luo, Wael Alghamdi, Yue M. Lu:
Optimal Spectral Initialization for Signal Recovery with Applications to Phase Retrieval. CoRR abs/1811.04420 (2018) - 2017
- [i17]Yanting Ma, Yue M. Lu, Dror Baron:
Multiprocessor Approximate Message Passing with Column-Wise Partitioning. CoRR abs/1701.02578 (2017) - [i16]Yue M. Lu, Gen Li:
Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation. CoRR abs/1702.06435 (2017) - [i15]Oussama Dhifallah, Yue M. Lu:
Fundamental Limits of PhaseMax for Phase Retrieval: A Replica Analysis. CoRR abs/1708.03355 (2017) - [i14]Oussama Dhifallah, Christos Thrampoulidis, Yue M. Lu:
Phase Retrieval via Linear Programming: Fundamental Limits and Algorithmic Improvements. CoRR abs/1710.05234 (2017) - [i13]Chuang Wang, Yue M. Lu:
The Scaling Limit of High-Dimensional Online Independent Component Analysis. CoRR abs/1710.05384 (2017) - [i12]Chuang Wang, Jonathan Mattingly, Yue M. Lu:
Scaling Limit: Exact and Tractable Analysis of Online Learning Algorithms with Applications to Regularized Regression and PCA. CoRR abs/1712.04332 (2017) - 2016
- [i11]Stanley H. Chan, Todd E. Zickler, Yue M. Lu:
Demystifying Symmetric Smoothing Filters. CoRR abs/1601.00088 (2016) - [i10]Chuang Wang, Yue M. Lu:
Online Learning for Sparse PCA in High Dimensions: Exact Dynamics and Phase Transitions. CoRR abs/1609.02191 (2016) - [i9]Yue M. Lu, Jon Oñativia, Pier Luigi Dragotti:
Sparsity according to Prony: Average-Case Performance Analysis and Phase Transition. CoRR abs/1611.07971 (2016) - 2015
- [i8]Chuang Wang, Ameya Agaskar, Yue M. Lu:
Randomized Kaczmarz Algorithm for Inconsistent Linear Systems: An Exact MSE Analysis. CoRR abs/1502.00190 (2015) - [i7]Ivan Dokmanic, Yue M. Lu:
Sampling Sparse Signals on the Sphere: Algorithms and Applications. CoRR abs/1502.07577 (2015) - [i6]Ameya Agaskar, Yue M. Lu:
Optimal Detection of Random Walks on Graphs: Performance Analysis via Statistical Physics. CoRR abs/1504.06924 (2015) - 2013
- [i5]Juri Ranieri, Amina Chebira, Yue M. Lu, Martin Vetterli:
Phase Retrieval for Sparse Signals: Uniqueness Conditions. CoRR abs/1308.3058 (2013) - [i4]Pier Luigi Dragotti, Yue M. Lu:
On Sparse Representation in Fourier and Local Bases. CoRR abs/1310.6011 (2013) - [i3]Stanley H. Chan, Todd E. Zickler, Yue M. Lu:
Monte Carlo non local means: Random sampling for large-scale image filtering. CoRR abs/1312.7366 (2013) - 2012
- [i2]Ameya Agaskar, Yue M. Lu:
A Spectral Graph Uncertainty Principle. CoRR abs/1206.6356 (2012) - 2011
- [i1]Feng Yang, Yue M. Lu, Luciano Sbaiz, Martin Vetterli:
Gigapixel Binary Sensing: Image Acquisition Using Oversampled One-Bit Poisson Statistics. CoRR abs/1106.0954 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-13 18:03 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint