default search action
Tianbao Yang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c132]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. ICML 2024 - [c131]Ming Yang, Xiyuan Wei, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms. ICML 2024 - [c130]Yongjian Zhong, Hieu Vu, Tianbao Yang, Bijaya Adhikari:
Efficient and Effective Implicit Dynamic Graph Neural Network. KDD 2024: 4595-4606 - [c129]Haoran Liu, Bokun Wang, Jianling Wang, Xiangjue Dong, Tianbao Yang, James Caverlee:
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks. WWW (Companion Volume) 2024: 485-488 - [i125]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. CoRR abs/2404.04575 (2024) - [i124]Quanqi Hu, Qi Qi, Zhaosong Lu, Tianbao Yang:
Single-loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions. CoRR abs/2405.18577 (2024) - [i123]Ilgee Hong, Zichong Li, Alexander Bukharin, Yixiao Li, Haoming Jiang, Tianbao Yang, Tuo Zhao:
Adaptive Preference Scaling for Reinforcement Learning with Human Feedback. CoRR abs/2406.02764 (2024) - [i122]Qi Qi, Quanqi Hu, Qihang Lin, Tianbao Yang:
Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning. CoRR abs/2406.05686 (2024) - [i121]Yongjian Zhong, Hieu Vu, Tianbao Yang, Bijaya Adhikari:
Efficient and Effective Implicit Dynamic Graph Neural Network. CoRR abs/2406.17894 (2024) - [i120]Xiyuan Wei, Fanjiang Ye, Ori Yonay, Xingyu Chen, Baixi Sun, Dingwen Tao, Tianbao Yang:
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources. CoRR abs/2407.01445 (2024) - [i119]Gang Li, Qihang Lin, Ayush Ghosh, Tianbao Yang:
Multi-Output Distributional Fairness via Post-Processing. CoRR abs/2409.00553 (2024) - [i118]Gang Li, Wendi Yu, Yao Yao, Wei Tong, Yingbin Liang, Qihang Lin, Tianbao Yang:
Model Developmental Safety: A Safety-Centric Method and Applications in Vision-Language Models. CoRR abs/2410.03955 (2024) - [i117]Zhishuai Guo, Tianbao Yang:
Communication-Efficient Federated Group Distributionally Robust Optimization. CoRR abs/2410.06369 (2024) - [i116]Bokun Wang, Yunwen Lei, Yiming Ying, Tianbao Yang:
On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning. CoRR abs/2410.09156 (2024) - [i115]Ryan King, Shivesh Kodali, Conrad Krueger, Tianbao Yang, Bobak J. Mortazavi:
An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data. CoRR abs/2410.09199 (2024) - [i114]Shantanu Thorat, Tianbao Yang:
Which LLMs are Difficult to Detect? A Detailed Analysis of Potential Factors Contributing to Difficulties in LLM Text Detection. CoRR abs/2410.14875 (2024) - 2023
- [j26]Tianbao Yang, Yiming Ying:
AUC Maximization in the Era of Big Data and AI: A Survey. ACM Comput. Surv. 55(8): 172:1-172:37 (2023) - [j25]Bokun Wang, Zhuoning Yuan, Yiming Ying, Tianbao Yang:
Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning. J. Mach. Learn. Res. 24: 145:1-145:46 (2023) - [j24]Zhishuai Guo, Yan Yan, Zhuoning Yuan, Tianbao Yang:
Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave Min-Max Problems with PL Condition. J. Mach. Learn. Res. 24: 148:1-148:63 (2023) - [j23]Qi Qi, Jiameng Lyu, Kung-Sik Chan, Er-Wei Bai, Tianbao Yang:
Stochastic Constrained DRO with a Complexity Independent of Sample Size. Trans. Mach. Learn. Res. 2023 (2023) - [j22]Qi Qi, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
Attentional-Biased Stochastic Gradient Descent. Trans. Mach. Learn. Res. 2023 (2023) - [c128]Yao Yao, Qihang Lin, Tianbao Yang:
Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints. AISTATS 2023: 10324-10342 - [c127]Zhishuai Guo, Rong Jin, Jiebo Luo, Tianbao Yang:
FeDXL: Provable Federated Learning for Deep X-Risk Optimization. ICML 2023: 11934-11966 - [c126]Quanqi Hu, Zi-Hao Qiu, Zhishuai Guo, Lijun Zhang, Tianbao Yang:
Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization. ICML 2023: 13550-13583 - [c125]Wei Jiang, Jiayu Qin, Lingyu Wu, Changyou Chen, Tianbao Yang, Lijun Zhang:
Learning Unnormalized Statistical Models via Compositional Optimization. ICML 2023: 15105-15124 - [c124]Yunwen Lei, Tianbao Yang, Yiming Ying, Ding-Xuan Zhou:
Generalization Analysis for Contrastive Representation Learning. ICML 2023: 19200-19227 - [c123]Zi-Hao Qiu, Quanqi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, Tianbao Yang:
Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization. ICML 2023: 28389-28421 - [c122]Dixian Zhu, Bokun Wang, Zhi Chen, Yaxing Wang, Milan Sonka, Xiaodong Wu, Tianbao Yang:
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling. ICML 2023: 43205-43227 - [c121]Dixian Zhu, Yiming Ying, Tianbao Yang:
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity. ICML 2023: 43289-43325 - [c120]Zhuoning Yuan, Dixian Zhu, Zi-Hao Qiu, Gang Li, Xuanhui Wang, Tianbao Yang:
LibAUC: A Deep Learning Library for X-Risk Optimization. KDD 2023: 5487-5499 - [c119]Ryan King, Tianbao Yang, Bobak J. Mortazavi:
Multimodal Pretraining of Medical Time Series and Notes. ML4H@NeurIPS 2023: 244-255 - [c118]Lijun Zhang, Peng Zhao, Zhen-Hua Zhuang, Tianbao Yang, Zhi-Hua Zhou:
Stochastic Approximation Approaches to Group Distributionally Robust Optimization. NeurIPS 2023 - [c117]Bang An, Xun Zhou, Yongjian Zhong, Tianbao Yang:
SpatialRank: Urban Event Ranking with NDCG Optimization on Spatiotemporal Data. NeurIPS 2023 - [c116]Quanqi Hu, Dixian Zhu, Tianbao Yang:
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization. NeurIPS 2023 - [c115]Gang Li, Wei Tong, Tianbao Yang:
Maximization of Average Precision for Deep Learning with Adversarial Ranking Robustness. NeurIPS 2023 - [c114]Xinwen Zhang, Yihan Zhang, Tianbao Yang, Richard Souvenir, Hongchang Gao:
Federated Compositional Deep AUC Maximization. NeurIPS 2023 - [i113]Lijun Zhang, Peng Zhao, Tianbao Yang, Zhi-Hua Zhou:
Stochastic Approximation Approaches to Group Distributionally Robust Optimization. CoRR abs/2302.09267 (2023) - [i112]Yunwen Lei, Tianbao Yang, Yiming Ying, Ding-Xuan Zhou:
Generalization Analysis for Contrastive Representation Learning. CoRR abs/2302.12383 (2023) - [i111]Xinwen Zhang, Yihan Zhang, Tianbao Yang, Richard Souvenir, Hongchang Gao:
Federated Compositional Deep AUC Maximization. CoRR abs/2304.10101 (2023) - [i110]Dixian Zhu, Bokun Wang, Zhi Chen, Yaxing Wang, Milan Sonka, Xiaodong Wu, Tianbao Yang:
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling. CoRR abs/2305.08040 (2023) - [i109]Zi-Hao Qiu, Quanqi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, Tianbao Yang:
Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization. CoRR abs/2305.11965 (2023) - [i108]Quanqi Hu, Zi-Hao Qiu, Zhishuai Guo, Lijun Zhang, Tianbao Yang:
Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization. CoRR abs/2305.18730 (2023) - [i107]Zhuoning Yuan, Dixian Zhu, Zi-Hao Qiu, Gang Li, Xuanhui Wang, Tianbao Yang:
LibAUC: A Deep Learning Library for X-Risk Optimization. CoRR abs/2306.03065 (2023) - [i106]Wei Jiang, Jiayu Qin, Lingyu Wu, Changyou Chen, Tianbao Yang, Lijun Zhang:
Learning Unnormalized Statistical Models via Compositional Optimization. CoRR abs/2306.07485 (2023) - [i105]Ming Yang, Xiyuan Wei, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms. CoRR abs/2307.03357 (2023) - [i104]Haoran Liu, Bokun Wang, Jianling Wang, Xiangjue Dong, Tianbao Yang, James Caverlee:
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks. CoRR abs/2308.15614 (2023) - [i103]Bang An, Xun Zhou, Yongjian Zhong, Tianbao Yang:
SpatialRank: Urban Event Ranking with NDCG Optimization on Spatiotemporal Data. CoRR abs/2310.00270 (2023) - [i102]Quanqi Hu, Dixian Zhu, Tianbao Yang:
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization. CoRR abs/2310.03234 (2023) - [i101]Jianzhi Xv, Gang Li, Tianbao Yang:
AUC-mixup: Deep AUC Maximization with Mixup. CoRR abs/2310.11693 (2023) - [i100]Bokun Wang, Tianbao Yang:
ALEXR: Optimal Single-Loop Algorithms for Convex Finite-Sum Coupled Compositional Stochastic Optimization. CoRR abs/2312.02277 (2023) - [i99]Ryan King, Tianbao Yang, Bobak Mortazavi:
Multimodal Pretraining of Medical Time Series and Notes. CoRR abs/2312.06855 (2023) - 2022
- [j21]Hassan Rafique, Mingrui Liu, Qihang Lin, Tianbao Yang:
Weakly-convex-concave min-max optimization: provable algorithms and applications in machine learning. Optim. Methods Softw. 37(3): 1087-1121 (2022) - [j20]Qingqing Hong, Xinyi Zhong, Weitong Chen, Zhenghua Zhang, Bin Li, Hao Sun, Tianbao Yang, Changwei Tan:
SATNet: A Spatial Attention Based Network for Hyperspectral Image Classification. Remote. Sens. 14(22): 5902 (2022) - [c113]Guanghui Wang, Ming Yang, Lijun Zhang, Tianbao Yang:
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization. AISTATS 2022: 3753-3771 - [c112]Zhuoning Yuan, Zhishuai Guo, Nitesh V. Chawla, Tianbao Yang:
Compositional Training for End-to-End Deep AUC Maximization. ICLR 2022 - [c111]Wei Jiang, Bokun Wang, Yibo Wang, Lijun Zhang, Tianbao Yang:
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization. ICML 2022: 10195-10216 - [c110]Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, Tianbao Yang:
Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence. ICML 2022: 18122-18152 - [c109]Bokun Wang, Tianbao Yang:
Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications. ICML 2022: 23292-23317 - [c108]Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, Shuiwang Ji:
GraphFM: Improving Large-Scale GNN Training via Feature Momentum. ICML 2022: 25684-25701 - [c107]Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, Tianbao Yang:
Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance. ICML 2022: 25760-25782 - [c106]Lijun Zhang, Guanghui Wang, Jinfeng Yi, Tianbao Yang:
A Simple yet Universal Strategy for Online Convex Optimization. ICML 2022: 26605-26623 - [c105]Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, Tianbao Yang:
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee. ICML 2022: 27548-27573 - [c104]Quanqi Hu, Yongjian Zhong, Tianbao Yang:
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization. NeurIPS 2022 - [c103]Wei Jiang, Gang Li, Yibo Wang, Lijun Zhang, Tianbao Yang:
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization. NeurIPS 2022 - [c102]Yao Yao, Qihang Lin, Tianbao Yang:
Large-scale Optimization of Partial AUC in a Range of False Positive Rates. NeurIPS 2022 - [c101]Lijun Zhang, Wei Jiang, Jinfeng Yi, Tianbao Yang:
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor. NeurIPS 2022 - [i98]Wei Jiang, Bokun Wang, Yibo Wang, Lijun Zhang, Tianbao Yang:
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization. CoRR abs/2202.07530 (2022) - [i97]Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, Tianbao Yang:
Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence. CoRR abs/2202.12183 (2022) - [i96]Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, Tianbao Yang:
Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance. CoRR abs/2202.12387 (2022) - [i95]Bokun Wang, Tianbao Yang:
Finite-Sum Compositional Stochastic Optimization: Theory and Applications. CoRR abs/2202.12396 (2022) - [i94]Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, Tianbao Yang:
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee. CoRR abs/2203.00176 (2022) - [i93]Yao Yao, Qihang Lin, Tianbao Yang:
Large-scale Optimization of Partial AUC in a Range of False Positive Rates. CoRR abs/2203.01505 (2022) - [i92]Dixian Zhu, Xiaodong Wu, Tianbao Yang:
Benchmarking Deep AUROC Optimization: Loss Functions and Algorithmic Choices. CoRR abs/2203.14177 (2022) - [i91]Tianbao Yang, Yiming Ying:
AUC Maximization in the Era of Big Data and AI: A Survey. CoRR abs/2203.15046 (2022) - [i90]Lijun Zhang, Wei Jiang, Jinfeng Yi, Tianbao Yang:
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor. CoRR abs/2205.00741 (2022) - [i89]Quanqi Hu, Yongjian Zhong, Tianbao Yang:
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization. CoRR abs/2206.00260 (2022) - [i88]Tianbao Yang:
Algorithmic Foundation of Deep X-Risk Optimization. CoRR abs/2206.00439 (2022) - [i87]Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, Shuiwang Ji:
GraphFM: Improving Large-Scale GNN Training via Feature Momentum. CoRR abs/2206.07161 (2022) - [i86]Wei Jiang, Gang Li, Yibo Wang, Lijun Zhang, Tianbao Yang:
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization. CoRR abs/2207.08540 (2022) - [i85]Qi Qi, Jiameng Lyu, Kung-Sik Chan, Er-Wei Bai, Tianbao Yang:
Stochastic Constrained DRO with a Complexity Independent of Sample Size. CoRR abs/2210.05740 (2022) - [i84]Qi Qi, Shervin Ardeshir, Yi Xu, Tianbao Yang:
Fairness via Adversarial Attribute Neighbourhood Robust Learning. CoRR abs/2210.06630 (2022) - [i83]Zhishuai Guo, Rong Jin, Jiebo Luo, Tianbao Yang:
FedX: Federated Learning for Compositional Pairwise Risk Optimization. CoRR abs/2210.14396 (2022) - [i82]Yao Yao, Qihang Lin, Tianbao Yang:
Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints. CoRR abs/2212.12603 (2022) - 2021
- [j19]Yaohui Zeng, Tianbao Yang, Patrick Breheny:
Hybrid safe-strong rules for efficient optimization in lasso-type problems. Comput. Stat. Data Anal. 153: 107063 (2021) - [j18]Mingrui Liu, Hassan Rafique, Qihang Lin, Tianbao Yang:
First-order Convergence Theory for Weakly-Convex-Weakly-Concave Min-max Problems. J. Mach. Learn. Res. 22: 169:1-169:34 (2021) - [c100]Zhuoning Yuan, Yan Yan, Milan Sonka, Tianbao Yang:
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification. ICCV 2021: 3020-3029 - [c99]Yunwen Lei, Zhenhuan Yang, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems. ICML 2021: 6175-6186 - [c98]Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, Tianbao Yang:
Federated Deep AUC Maximization for Hetergeneous Data with a Constant Communication Complexity. ICML 2021: 12219-12229 - [c97]Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, Tianbao Yang:
Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence. NeurIPS 2021: 1752-1765 - [c96]Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, Tianbao Yang:
An Online Method for A Class of Distributionally Robust Optimization with Non-convex Objectives. NeurIPS 2021: 10067-10080 - [c95]Lijun Zhang, Wei Jiang, Shiyin Lu, Tianbao Yang:
Revisiting Smoothed Online Learning. NeurIPS 2021: 13599-13612 - [c94]Zhenhuan Yang, Yunwen Lei, Puyu Wang, Tianbao Yang, Yiming Ying:
Simple Stochastic and Online Gradient Descent Algorithms for Pairwise Learning. NeurIPS 2021: 20160-20171 - [c93]Guanghui Wang, Yuanyu Wan, Tianbao Yang, Lijun Zhang:
Online Convex Optimization with Continuous Switching Constraint. NeurIPS 2021: 28636-28647 - [i81]Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, Tianbao Yang:
Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity. CoRR abs/2102.04635 (2021) - [i80]Lijun Zhang, Wei Jiang, Shiyin Lu, Tianbao Yang:
Revisiting Smoothed Online Learning. CoRR abs/2102.06933 (2021) - [i79]Guanghui Wang, Yuanyu Wan, Tianbao Yang, Lijun Zhang:
Online Convex Optimization with Continuous Switching Constraint. CoRR abs/2103.11370 (2021) - [i78]Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, Tianbao Yang:
Stochastic Optimization of Area Under Precision-Recall Curve for Deep Learning with Provable Convergence. CoRR abs/2104.08736 (2021) - [i77]Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
On Stochastic Moving-Average Estimators for Non-Convex Optimization. CoRR abs/2104.14840 (2021) - [i76]Zhishuai Guo, Tianbao Yang:
Randomized Stochastic Variance-Reduced Methods for Stochastic Bilevel Optimization. CoRR abs/2105.02266 (2021) - [i75]Lijun Zhang, Guanghui Wang, Jinfeng Yi, Tianbao Yang:
A Simple yet Universal Strategy for Online Convex Optimization. CoRR abs/2105.03681 (2021) - [i74]Yunwen Lei, Zhenhuan Yang, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems. CoRR abs/2105.03793 (2021) - [i73]Bokun Wang, Zhuoning Yuan, Yiming Ying, Tianbao Yang:
Memory-based Optimization Methods for Model-Agnostic Meta-Learning. CoRR abs/2106.04911 (2021) - [i72]Guanghui Wang, Ming Yang, Lijun Zhang, Tianbao Yang:
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization. CoRR abs/2107.01173 (2021) - [i71]Tianbao Yang:
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities. CoRR abs/2111.02400 (2021) - [i70]Zhenhuan Yang, Yunwen Lei, Puyu Wang, Tianbao Yang, Yiming Ying:
Simple Stochastic and Online Gradient Descent Algorithms for Pairwise Learning. CoRR abs/2111.12050 (2021) - [i69]Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
A Novel Convergence Analysis for Algorithms of the Adam Family. CoRR abs/2112.03459 (2021) - [i68]Dixian Zhu, Tianbao Yang:
A Unified DRO View of Multi-class Loss Functions with top-N Consistency. CoRR abs/2112.14869 (2021) - 2020
- [j17]Qihang Lin, Selvaprabu Nadarajah, Negar Soheili, Tianbao Yang:
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints. J. Mach. Learn. Res. 21: 143:1-143:45 (2020) - [j16]Soumitra Pal, Tingyang Xu, Tianbao Yang, Sanguthevar Rajasekaran, Jinbo Bi:
Hybrid-DCA: A double asynchronous approach for stochastic dual coordinate ascent. J. Parallel Distributed Comput. 143: 47-66 (2020) - [j15]Tianbao Yang, Lijun Zhang, Qihang Lin, Shenghuo Zhu, Rong Jin:
High-dimensional model recovery from random sketched data by exploring intrinsic sparsity. Mach. Learn. 109(5): 899-938 (2020) - [c92]Dixian Zhu, Dongjin Song, Yuncong Chen, Cristian Lumezanu, Wei Cheng, Bo Zong, Jingchao Ni, Takehiko Mizoguchi, Tianbao Yang, Haifeng Chen:
Deep Unsupervised Binary Coding Networks for Multivariate Time Series Retrieval. AAAI 2020: 1403-1411 - [c91]Pingbo Pan, Ping Liu, Yan Yan, Tianbao Yang, Yi Yang:
Adversarial Localized Energy Network for Structured Prediction. AAAI 2020: 5347-5354 - [c90]Lijun Zhang, Shiyin Lu, Tianbao Yang:
Minimizing Dynamic Regret and Adaptive Regret Simultaneously. AISTATS 2020: 309-319 - [c89]Qi Qi, Yan Yan, Zixuan Wu, Xiaoyu Wang, Tianbao Yang:
A Simple and Effective Framework for Pairwise Deep Metric Learning. ECCV (27) 2020: 375-391 - [c88]Zhuoning Yuan, Zhishuai Guo, Xiaotian Yu, Xiaoyu Wang, Tianbao Yang:
Accelerating Deep Learning with Millions of Classes. ECCV (23) 2020: 711-726 - [c87]Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, Tianbao Yang:
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets. ICLR 2020 - [c86]Mingrui Liu, Zhuoning Yuan, Yiming Ying, Tianbao Yang:
Stochastic AUC Maximization with Deep Neural Networks. ICLR 2020 - [c85]Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, Tianbao Yang:
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks. ICML 2020: 3864-3874 - [c84]Runchao Ma, Qihang Lin, Tianbao Yang:
Quadratically Regularized Subgradient Methods for Weakly Convex Optimization with Weakly Convex Constraints. ICML 2020: 6554-6564 - [c83]Yan Yan, Yi Xu, Lijun Zhang, Xiaoyu Wang, Tianbao Yang:
Stochastic Optimization for Non-convex Inf-Projection Problems. ICML 2020: 10660-10669 - [c82]Yan Yan, Yi Xu, Qihang Lin, Wei Liu, Tianbao Yang:
Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization. NeurIPS 2020 - [c81]Yunhui Guo, Mingrui Liu, Tianbao Yang, Tajana Rosing:
Improved Schemes for Episodic Memory-based Lifelong Learning. NeurIPS 2020 - [c80]Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui, Jarret Ross, Tianbao Yang, Payel Das:
A Decentralized Parallel Algorithm for Training Generative Adversarial Nets. NeurIPS 2020 - [i67]Lijun Zhang, Shiyin Lu, Tianbao Yang:
Minimizing Dynamic Regret and Adaptive Regret Simultaneously. CoRR abs/2002.02085 (2020) - [i66]Yan Yan, Yi Xu, Qihang Lin, Wei Liu, Tianbao Yang:
Sharp Analysis of Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization. CoRR abs/2002.05309 (2020) - [i65]Zhishuai Guo, Zixuan Wu, Yan Yan, Xiaoyu Wang, Tianbao Yang:
Revisiting SGD with Increasingly Weighted Averaging: Optimization and Generalization Perspectives. CoRR abs/2003.04339 (2020) - [i64]Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, Tianbao Yang:
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks. CoRR abs/2005.02426 (2020) - [i63]Zhishuai Guo, Zhuoning Yuan, Yan Yan, Tianbao Yang:
Fast Objective and Duality Gap Convergence for Non-convex Strongly-concave Min-max Problems. CoRR abs/2006.06889 (2020) - [i62]Yan Yan, Xin Man, Tianbao Yang:
Nearly Optimal Robust Method for Convex Compositional Problems with Heavy-Tailed Noise. CoRR abs/2006.10095 (2020) - [i61]Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, Tianbao Yang:
A Practical Online Method for Distributionally Deep Robust Optimization. CoRR abs/2006.10138 (2020) - [i60]Daoming Lyu, Qi Qi, Mohammad Ghavamzadeh, Hengshuai Yao, Tianbao Yang, Bo Liu:
Variance-Reduced Off-Policy Memory-Efficient Policy Search. CoRR abs/2009.06548 (2020) - [i59]Mingrui Liu, Wei Zhang, Francesco Orabona, Tianbao Yang:
Adam+: A Stochastic Method with Adaptive Variance Reduction. CoRR abs/2011.11985 (2020) - [i58]Zhuoning Yuan, Yan Yan, Milan Sonka, Tianbao Yang:
Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification. CoRR abs/2012.03173 (2020) - [i57]Qi Qi, Yi Xu, Rong Jin, Wotao Yin, Tianbao Yang:
Attentional Biased Stochastic Gradient for Imbalanced Classification. CoRR abs/2012.06951 (2020)
2010 – 2019
- 2019
- [j14]Tianbao Yang:
Advancing non-convex and constrained learning: challenges and opportunities. AI Matters 5(3): 29-39 (2019) - [j13]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion. J. Mach. Learn. Res. 20: 97:1-97:22 (2019) - [j12]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu, Zhi-Hua Zhou:
A simple homotopy proximal mapping algorithm for compressive sensing. Mach. Learn. 108(6): 1019-1056 (2019) - [c79]Dixian Zhu, Zhe Li, Xiaoyu Wang, Boqing Gong, Tianbao Yang:
A Robust Zero-Sum Game Framework for Pool-based Active Learning. AISTATS 2019: 517-526 - [c78]Jian Ren, Zhe Li, Jianchao Yang, Ning Xu, Tianbao Yang, David J. Foran:
EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching From Scratch. CVPR 2019: 9059-9068 - [c77]Zaiyi Chen, Zhuoning Yuan, Jinfeng Yi, Bowen Zhou, Enhong Chen, Tianbao Yang:
Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions. ICLR (Poster) 2019 - [c76]Zaiyi Chen, Yi Xu, Haoyuan Hu, Tianbao Yang:
Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number. ICML 2019: 1102-1111 - [c75]Yi Xu, Qi Qi, Qihang Lin, Rong Jin, Tianbao Yang:
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence. ICML 2019: 6942-6951 - [c74]Yi Xu, Zhuoning Yuan, Sen Yang, Rong Jin, Tianbao Yang:
On the Convergence of (Stochastic) Gradient Descent with Extrapolation for Non-Convex Minimization. IJCAI 2019: 4003-4009 - [c73]Zhuoning Yuan, Yan Yan, Rong Jin, Tianbao Yang:
Stagewise Training Accelerates Convergence of Testing Error Over SGD. NeurIPS 2019: 2604-2614 - [c72]Yi Xu, Rong Jin, Tianbao Yang:
Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems. NeurIPS 2019: 2626-2636 - [c71]Yi Xu, Shenghuo Zhu, Sen Yang, Chi Zhang, Rong Jin, Tianbao Yang:
Learning with Non-Convex Truncated Losses by SGD. UAI 2019: 701-711 - [i56]Yan Yan, Yi Xu, Qihang Lin, Lijun Zhang, Tianbao Yang:
Stochastic Primal-Dual Algorithms with Faster Convergence than O(1/√T) for Problems without Bilinear Structure. CoRR abs/1904.10112 (2019) - [i55]Qihang Lin, Selvaprabu Nadarajah, Negar Soheili, Tianbao Yang:
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints. CoRR abs/1908.03077 (2019) - [i54]Yan Yan, Yi Xu, Lijun Zhang, Xiaoyu Wang, Tianbao Yang:
Stochastic Optimization for Non-convex Inf-Projection Problems. CoRR abs/1908.09941 (2019) - [i53]Mingrui Liu, Zhuoning Yuan, Yiming Ying, Tianbao Yang:
Stochastic AUC Maximization with Deep Neural Networks. CoRR abs/1908.10831 (2019) - [i52]Yunhui Guo, Mingrui Liu, Tianbao Yang, Tajana Rosing:
Learning with Long-term Remembering: Following the Lead of Mixed Stochastic Gradient. CoRR abs/1909.11763 (2019) - [i51]Mingrui Liu, Youssef Mroueh, Wei Zhang, Xiaodong Cui, Jerret Ross, Tianbao Yang, Payel Das:
Decentralized Parallel Algorithm for Training Generative Adversarial Nets. CoRR abs/1910.12999 (2019) - [i50]Qi Qi, Yan Yan, Zixuan Wu, Xiaoyu Wang, Tianbao Yang:
a simple and effective framework for pairwise deep metric learning. CoRR abs/1912.11194 (2019) - [i49]Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, Tianbao Yang:
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets. CoRR abs/1912.11940 (2019) - 2018
- [j11]Dixian Zhu, Changjie Cai, Tianbao Yang, Xun Zhou:
A Machine Learning Approach for Air Quality Prediction: Model Regularization and Optimization. Big Data Cogn. Comput. 2(1): 5 (2018) - [j10]Tianbao Yang, Qihang Lin:
RSG: Beating Subgradient Method without Smoothness and Strong Convexity. J. Mach. Learn. Res. 19: 6:1-6:33 (2018) - [c70]Tianbao Yang, Zhe Li, Lijun Zhang:
A Simple Analysis for Exp-concave Empirical Minimization with Arbitrary Convex Regularizer. AISTATS 2018: 445-453 - [c69]Zihao Cheng, Dong Yue, Songlin Hu, Tianbao Yang, Lei Chen:
An Indirect-Direct event-triggered mechanism for networked control system against DoS attacks. ANZCC 2018: 27-32 - [c68]Yandong Li, Liqiang Wang, Tianbao Yang, Boqing Gong:
How Local Is the Local Diversity? Reinforcing Sequential Determinantal Point Processes with Dynamic Ground Sets for Supervised Video Summarization. ECCV (8) 2018: 156-174 - [c67]Aidean Sharghi, Ali Borji, Chengtao Li, Tianbao Yang, Boqing Gong:
Improving Sequential Determinantal Point Processes for Supervised Video Summarization. ECCV (3) 2018: 533-550 - [c66]Zaiyi Chen, Yi Xu, Enhong Chen, Tianbao Yang:
SADAGRAD: Strongly Adaptive Stochastic Gradient Methods. ICML 2018: 912-920 - [c65]Qihang Lin, Runchao Ma, Tianbao Yang:
Level-Set Methods for Finite-Sum Constrained Convex Optimization. ICML 2018: 3118-3127 - [c64]Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu Wang, Tianbao Yang:
Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate. ICML 2018: 3195-3203 - [c63]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Dynamic Regret of Strongly Adaptive Methods. ICML 2018: 5877-5886 - [c62]Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, Yi Yang:
A Unified Analysis of Stochastic Momentum Methods for Deep Learning. IJCAI 2018: 2955-2961 - [c61]Xiaotian Yu, Irwin King, Michael R. Lyu, Tianbao Yang:
A Generic Approach for Accelerating Stochastic Zeroth-Order Convex Optimization. IJCAI 2018: 3040-3046 - [c60]Zhuoning Yuan, Xun Zhou, Tianbao Yang:
Hetero-ConvLSTM: A Deep Learning Approach to Traffic Accident Prediction on Heterogeneous Spatio-Temporal Data. KDD 2018: 984-992 - [c59]Xiaoxuan Zhang, Mingrui Liu, Xun Zhou, Tianbao Yang:
Faster Online Learning of Optimal Threshold for Consistent F-measure Optimization. NeurIPS 2018: 3893-3903 - [c58]Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, Tianbao Yang:
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions. NeurIPS 2018: 4683-4694 - [c57]Mingrui Liu, Zhe Li, Xiaoyu Wang, Jinfeng Yi, Tianbao Yang:
Adaptive Negative Curvature Descent with Applications in Non-convex Optimization. NeurIPS 2018: 4858-4867 - [c56]Yi Xu, Rong Jin, Tianbao Yang:
First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time. NeurIPS 2018: 5535-5545 - [r2]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
Combining Link and Content for Community Detection. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - [i48]Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, Tianbao Yang:
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions. CoRR abs/1805.04577 (2018) - [i47]Yi Xu, Shenghuo Zhu, Sen Yang, Chi Zhang, Rong Jin, Tianbao Yang:
Learning with Non-Convex Truncated Losses by SGD. CoRR abs/1805.07880 (2018) - [i46]Zhe Li, Xuehan Xiong, Zhou Ren, Ning Zhang, Xiaoyu Wang, Tianbao Yang:
An Aggressive Genetic Programming Approach for Searching Neural Network Structure Under Computational Constraints. CoRR abs/1806.00851 (2018) - [i45]Jian Ren, Zhe Li, Jianchao Yang, Ning Xu, Tianbao Yang, David J. Foran:
EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching. CoRR abs/1806.01940 (2018) - [i44]Yandong Li, Liqiang Wang, Tianbao Yang, Boqing Gong:
How Local is the Local Diversity? Reinforcing Sequential Determinantal Point Processes with Dynamic Ground Sets for Supervised Video Summarization. CoRR abs/1807.04219 (2018) - [i43]Aidean Sharghi, Ali Borji, Chengtao Li, Tianbao Yang, Boqing Gong:
Improving Sequential Determinantal Point Processes for Supervised Video Summarization. CoRR abs/1807.10957 (2018) - [i42]Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, Yi Yang:
A Unified Analysis of Stochastic Momentum Methods for Deep Learning. CoRR abs/1808.10396 (2018) - [i41]Pingbo Pan, Yan Yan, Tianbao Yang, Yi Yang:
Learning Discriminators as Energy Networks in Adversarial Learning. CoRR abs/1810.01152 (2018) - [i40]Hassan Rafique, Mingrui Liu, Qihang Lin, Tianbao Yang:
Non-Convex Min-Max Optimization: Provable Algorithms and Applications in Machine Learning. CoRR abs/1810.02060 (2018) - [i39]Tianbao Yang, Yan Yan, Zhuoning Yuan, Rong Jin:
Why Does Stagewise Training Accelerate Convergence of Testing Error Over SGD? CoRR abs/1812.03934 (2018) - 2017
- [j9]Jason D. Lee, Qihang Lin, Tengyu Ma, Tianbao Yang:
Distributed Stochastic Variance Reduced Gradient Methods by Sampling Extra Data with Replacement. J. Mach. Learn. Res. 18: 122:1-122:43 (2017) - [c55]Zhe Li, Tianbao Yang, Lijun Zhang, Rong Jin:
A Two-Stage Approach for Learning a Sparse Model with Sharp Excess Risk Analysis. AAAI 2017: 2224-2230 - [c54]Yi Xu, Haiqin Yang, Lijun Zhang, Tianbao Yang:
Efficient Non-Oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee. AAAI 2017: 2796-2802 - [c53]Yan Yan, Tianbao Yang, Yi Yang, Jianhui Chen:
A Framework of Online Learning with Imbalanced Streaming Data. AAAI 2017: 2817-2823 - [c52]Lijun Zhang, Tianbao Yang, Rong Jin:
Empirical Risk Minimization for Stochastic Convex Optimization: $O(1/n)$- and $O(1/n^2)$-type of Risk Bounds. COLT 2017: 1954-1979 - [c51]Yi Xu, Qihang Lin, Tianbao Yang:
Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence. ICML 2017: 3821-3830 - [c50]Tianbao Yang, Qihang Lin, Lijun Zhang:
A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates. ICML 2017: 3901-3910 - [c49]Yichi Xiao, Zhe Li, Tianbao Yang, Lijun Zhang:
SVD-free Convex-Concave Approaches for Nuclear Norm Regularization. IJCAI 2017: 3126-3132 - [c48]Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou:
Improved Dynamic Regret for Non-degenerate Functions. NIPS 2017: 732-741 - [c47]Yi Xu, Mingrui Liu, Qihang Lin, Tianbao Yang:
ADMM without a Fixed Penalty Parameter: Faster Convergence with New Adaptive Penalization. NIPS 2017: 1267-1277 - [c46]Mingrui Liu, Tianbao Yang:
Adaptive Accelerated Gradient Converging Method under H\"{o}lderian Error Bound Condition. NIPS 2017: 3104-3114 - [c45]Yi Xu, Qihang Lin, Tianbao Yang:
Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter. NIPS 2017: 3277-3287 - [p1]Chuang Gan, Tianbao Yang, Boqing Gong:
A Multisource Domain Generalization Approach to Visual Attribute Detection. Domain Adaptation in Computer Vision Applications 2017: 277-289 - [i38]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Strongly Adaptive Regret Implies Optimally Dynamic Regret. CoRR abs/1701.07570 (2017) - [i37]Lijun Zhang, Tianbao Yang, Rong Jin:
Empirical Risk Minimization for Stochastic Convex Optimization: O(1/n)- and O(1/n2)-type of Risk Bounds. CoRR abs/1702.02030 (2017) - [i36]Zhe Li, Xiaoyu Wang, Xutao Lv, Tianbao Yang:
SEP-Nets: Small and Effective Pattern Networks. CoRR abs/1706.03912 (2017) - [i35]Tianbao Yang, Zhe Li, Lijun Zhang:
A Simple Analysis for Exp-concave Empirical Minimization with Arbitrary Convex Regularizer. CoRR abs/1709.02909 (2017) - [i34]Mingrui Liu, Tianbao Yang:
Stochastic Non-convex Optimization with Strong High Probability Second-order Convergence. CoRR abs/1710.09447 (2017) - 2016
- [j8]Tianbao Yang, Rong Jin, Shenghuo Zhu, Qihang Lin:
On Data Preconditioning for Regularized Loss Minimization. Mach. Learn. 103(1): 57-79 (2016) - [c44]Zhe Li, Tianbao Yang, Lijun Zhang, Rong Jin:
Fast and Accurate Refined Nyström-Based Kernel SVM. AAAI 2016: 1830-1836 - [c43]Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou:
Stochastic Optimization for Kernel PCA. AAAI 2016: 2315-2322 - [c42]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Sparse Learning for Large-Scale and High-Dimensional Data: A Randomized Convex-Concave Optimization Approach. ALT 2016: 83-97 - [c41]Chuang Gan, Tianbao Yang, Boqing Gong:
Learning Attributes Equals Multi-Source Domain Generalization. CVPR 2016: 87-97 - [c40]Lijun Zhang, Tianbao Yang, Rong Jin, Yichi Xiao, Zhi-Hua Zhou:
Online Stochastic Linear Optimization under One-bit Feedback. ICML 2016: 392-401 - [c39]Tianbao Yang, Lijun Zhang, Rong Jin, Jinfeng Yi:
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient. ICML 2016: 449-457 - [c38]Xiaoxuan Zhang, Tianbao Yang, Padmini Srinivasan:
Online Asymmetric Active Learning with Imbalanced Data. KDD 2016: 2055-2064 - [c37]Yi Xu, Yan Yan, Qihang Lin, Tianbao Yang:
Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than O(1/\epsilon). NIPS 2016: 1208-1216 - [c36]Zhe Li, Boqing Gong, Tianbao Yang:
Improved Dropout for Shallow and Deep Learning. NIPS 2016: 2523-2531 - [c35]Jianhui Chen, Tianbao Yang, Qihang Lin, Lijun Zhang, Yi Chang:
Optimal Stochastic Strongly Convex Optimization with a Logarithmic Number of Projections. UAI 2016 - [i33]Zhe Li, Boqing Gong, Tianbao Yang:
Improved Dropout for Shallow and Deep Learning. CoRR abs/1602.02220 (2016) - [i32]Chuang Gan, Tianbao Yang, Boqing Gong:
Learning Attributes Equals Multi-Source Domain Generalization. CoRR abs/1605.00743 (2016) - [i31]Tianbao Yang, Lijun Zhang, Rong Jin, Jinfeng Yi:
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient. CoRR abs/1605.04638 (2016) - [i30]Yi Xu, Qihang Lin, Tianbao Yang:
Accelerate Stochastic Subgradient Method by Leveraging Local Error Bound. CoRR abs/1607.01027 (2016) - [i29]Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou:
Improved dynamic regret for non-degeneracy functions. CoRR abs/1608.03933 (2016) - [i28]Soumitra Pal, Tingyang Xu, Tianbao Yang, Sanguthevar Rajasekaran, Jinbo Bi:
Hybrid-DCA: A Double Asynchronous Approach for Stochastic Dual Coordinate Ascent. CoRR abs/1610.07184 (2016) - [i27]Yi Xu, Haiqin Yang, Lijun Zhang, Tianbao Yang:
Efficient Non-oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee. CoRR abs/1612.01663 (2016) - 2015
- [j7]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Shenghuo Zhu:
An efficient primal dual prox method for non-smooth optimization. Mach. Learn. 98(3): 369-406 (2015) - [c34]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Online Bandit Learning for a Special Class of Non-Convex Losses. AAAI 2015: 3158-3164 - [c33]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
A Simple Homotopy Algorithm for Compressive Sensing. AISTATS 2015 - [c32]Saining Xie, Tianbao Yang, Xiaoyu Wang, Yuanqing Lin:
Hyper-class augmented and regularized deep learning for fine-grained image classification. CVPR 2015: 2645-2654 - [c31]Syed Shabih Hasan, Ryan Brummet, Octav Chipara, Yu-Hsiang Wu, Tianbao Yang:
In-Situ Measurement and Prediction of Hearing Aid Outcomes Using Mobile Phones. ICHI 2015: 525-534 - [c30]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
An Explicit Sampling Dependent Spectral Error Bound for Column Subset Selection. ICML 2015: 135-143 - [c29]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
Theory of Dual-sparse Regularized Randomized Reduction. ICML 2015: 305-314 - [c28]Jinfeng Yi, Lijun Zhang, Tianbao Yang, Wei Liu, Jun Wang:
An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints. KDD 2015: 1405-1414 - [c27]Tianbao Yang, Qihang Lin, Rong Jin:
Big Data Analytics: Optimization and Randomization. KDD 2015: 2327 - [i26]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
Theory of Dual-sparse Regularized Randomized Reduction. CoRR abs/1504.03991 (2015) - [i25]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Analysis of Nuclear Norm Regularization for Full-rank Matrix Completion. CoRR abs/1504.06817 (2015) - [i24]Tianbao Yang, Lijun Zhang, Qihang Lin, Rong Jin:
Fast Sparse Least-Squares Regression with Non-Asymptotic Guarantees. CoRR abs/1507.05185 (2015) - [i23]Adams Wei Yu, Qihang Lin, Tianbao Yang:
Doubly Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization with Factorized Data. CoRR abs/1508.03390 (2015) - [i22]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Online Stochastic Linear Optimization under One-bit Feedback. CoRR abs/1509.07728 (2015) - [i21]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Stochastic Proximal Gradient Descent for Nuclear Norm Regularization. CoRR abs/1511.01664 (2015) - [i20]Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
Sparse Learning for Large-scale and High-dimensional Data: A Randomized Convex-concave Optimization Approach. CoRR abs/1511.03766 (2015) - 2014
- [j6]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Shenghuo Zhu:
Regret bounded by gradual variation for online convex optimization. Mach. Learn. 95(2): 183-223 (2014) - [j5]Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang, Shenghuo Zhu:
Random Projections for Classification: A Recovery Approach. IEEE Trans. Inf. Theory 60(11): 7300-7316 (2014) - [c26]Jianhui Chen, Tianbao Yang, Shenghuo Zhu:
Efficient Low-Rank Stochastic Gradient Descent Methods for Solving Semidefinite Programs. AISTATS 2014: 122-130 - [c25]Tianbao Yang, Rong Jin:
Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities. NIPS 2014: 262-270 - [r1]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
Combining Link and Content for Community Detection. Encyclopedia of Social Network Analysis and Mining 2014: 190-201 - [i19]Tianbao Yang, Rong Jin, Shenghuo Zhu:
On Data Preconditioning for Regularized Loss Minimization. CoRR abs/1408.3115 (2014) - [i18]Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:
A Simple Homotopy Proximal Mapping for Compressive Sensing. CoRR abs/1412.1205 (2014) - [i17]Xiaoyu Wang, Tianbao Yang, Guobin Chen, Yuanqing Lin:
Object-centric Sampling for Fine-grained Image Classification. CoRR abs/1412.3161 (2014) - 2013
- [j4]Steven C. H. Hoi, Rong Jin, Peilin Zhao, Tianbao Yang:
Online Multiple Kernel Classification. Mach. Learn. 90(2): 289-316 (2013) - [j3]Rong Jin, Tianbao Yang, Mehrdad Mahdavi, Yufeng Li, Zhi-Hua Zhou:
Improved Bounds for the Nyström Method With Application to Kernel Classification. IEEE Trans. Inf. Theory 59(10): 6939-6949 (2013) - [c24]Tianbao Yang, Prakash Mandayam Comar, Linli Xu:
Community detection by popularity based models for authored networked data. ASONAM 2013: 74-81 - [c23]Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang, Shenghuo Zhu:
Recovering the Optimal Solution by Dual Random Projection. COLT 2013: 135-157 - [c22]Lijun Zhang, Tianbao Yang, Rong Jin, Xiaofei He:
O(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions. ICML (3) 2013: 1121-1129 - [c21]Tianbao Yang, Lei Wu, Piero P. Bonissone:
A Directed Inference Approach towards Multi-class Multi-model Fusion. MCS 2013: 352-363 - [c20]Tianbao Yang:
Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent. NIPS 2013: 629-637 - [c19]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
Stochastic Convex Optimization with Multiple Objectives. NIPS 2013: 1115-1123 - [i16]Rong Jin, Tianbao Yang, Mehrdad Mahdavi:
Sparse Multiple Kernel Learning with Geometric Convergence Rate. CoRR abs/1302.0315 (2013) - [i15]Lijun Zhang, Tianbao Yang, Rong Jin, Xiaofei He:
O(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions. CoRR abs/1304.0740 (2013) - [i14]Rong Jin, Tianbao Yang, Shenghuo Zhu:
A New Analysis of Compressive Sensing by Stochastic Proximal Gradient Descent. CoRR abs/1304.4680 (2013) - [i13]Tianbao Yang, Lijun Zhang:
Efficient Stochastic Gradient Descent for Strongly Convex Optimization. CoRR abs/1304.5504 (2013) - [i12]Tianbao Yang, Shenghuo Zhu, Rong Jin, Yuanqing Lin:
On Theoretical Analysis of Distributed Stochastic Dual Coordinate Ascent. CoRR abs/1312.1031 (2013) - 2012
- [j2]Mehrdad Mahdavi, Rong Jin, Tianbao Yang:
Trading regret for efficiency: online convex optimization with long term constraints. J. Mach. Learn. Res. 13: 2503-2528 (2012) - [c18]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Jinfeng Yi, Steven C. H. Hoi:
Online Kernel Selection: Algorithms and Evaluations. AAAI 2012: 1197-1203 - [c17]Jinfeng Yi, Tianbao Yang, Rong Jin, Anil K. Jain, Mehrdad Mahdavi:
Robust Ensemble Clustering by Matrix Completion. ICDM 2012: 1176-1181 - [c16]Ming Ji, Tianbao Yang, Binbin Lin, Rong Jin, Jiawei Han:
A Simple Algorithm for Semi-supervised Learning with Improved Generalization Error Bound. ICML 2012 - [c15]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Lijun Zhang, Yang Zhou:
Multiple Kernel Learning from Noisy Labels by Stochastic Programming. ICML 2012 - [c14]Tianbao Yang, Yufeng Li, Mehrdad Mahdavi, Rong Jin, Zhi-Hua Zhou:
Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison. NIPS 2012: 485-493 - [c13]Mehrdad Mahdavi, Tianbao Yang, Rong Jin, Shenghuo Zhu, Jinfeng Yi:
Stochastic Gradient Descent with Only One Projection. NIPS 2012: 503-511 - [c12]Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain, Tianbao Yang:
Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning. NIPS 2012: 1781-1789 - [c11]Tianbao Yang, Rong Jin, Anil K. Jain:
Learning kernel combination from noisy pairwise constraints. SSP 2012: 752-755 - [c10]Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, Shenghuo Zhu:
Online Optimization with Gradual Variations. COLT 2012: 6.1-6.20 - [i11]Tianbao Yang, Rong Jin, Mehrdad Mahdavi, Shenghuo Zhu:
An Efficient Primal-Dual Prox Method for Non-Smooth Optimization. CoRR abs/1201.5283 (2012) - [i10]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
Efficient Constrained Regret Minimization. CoRR abs/1205.2265 (2012) - [i9]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
A Bayesian Framework for Community Detection Integrating Content and Link. CoRR abs/1205.2603 (2012) - [i8]Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Lijun Zhang, Yang Zhou:
Multiple Kernel Learning from Noisy Labels by Stochastic Programming. CoRR abs/1206.4629 (2012) - [i7]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
An Improved Bound for the Nystrom Method for Large Eigengap. CoRR abs/1209.0001 (2012) - [i6]Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang:
Recovering Optimal Solution by Dual Random Projection. CoRR abs/1211.3046 (2012) - [i5]Mehrdad Mahdavi, Tianbao Yang, Rong Jin:
Online Stochastic Optimization with Multiple Objectives. CoRR abs/1211.6013 (2012) - [i4]Michinari Momma, Yun Chi, Yuanqing Lin, Shenghuo Zhu, Tianbao Yang:
Influence Analysis in the Blogosphere. CoRR abs/1212.5863 (2012) - 2011
- [j1]Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, Rong Jin:
Detecting communities and their evolutions in dynamic social networks - a Bayesian approach. Mach. Learn. 82(2): 157-189 (2011) - [c9]Peilin Zhao, Steven C. H. Hoi, Rong Jin, Tianbao Yang:
Online AUC Maximization. ICML 2011: 233-240 - [c8]Wei Tong, Fengjie Li, Tianbao Yang, Rong Jin, Anil K. Jain:
A kernel density based approach for large scale image retrieval. ICMR 2011: 28 - [i3]Rong Jin, Tianbao Yang, Mehrdad Mahdavi:
Improved Bound for the Nystrom's Method and its Application to Kernel Classification. CoRR abs/1111.2262 (2011) - [i2]Mehrdad Mahdavi, Rong Jin, Tianbao Yang:
Trading Regret for Efficiency: Online Convex Optimization with Long Term Constraints. CoRR abs/1111.6082 (2011) - [i1]Tianbao Yang, Rong Jin, Mehrdad Mahdavi:
Regret Bound by Variation for Online Convex Optimization. CoRR abs/1111.6337 (2011) - 2010
- [c7]Rong Jin, Steven C. H. Hoi, Tianbao Yang:
Online Multiple Kernel Learning: Algorithms and Mistake Bounds. ALT 2010: 390-404 - [c6]Tianbao Yang, Rong Jin, Anil K. Jain:
Learning from Noisy Side Information by Generalized Maximum Entropy Model. ICML 2010: 1199-1206 - [c5]Tianbao Yang, Rong Jin, Anil K. Jain, Yang Zhou, Wei Tong:
Unsupervised transfer classification: application to text categorization. KDD 2010: 1159-1168 - [c4]Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, Rong Jin:
Directed Network Community Detection: A Popularity and Productivity Link Model. SDM 2010: 742-753
2000 – 2009
- 2009
- [c3]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
Combining link and content for community detection: a discriminative approach. KDD 2009: 927-936 - [c2]Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, Rong Jin:
A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks. SDM 2009: 990-1001 - [c1]Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu:
A Bayesian Framework for Community Detection Integrating Content and Link. UAI 2009: 615-622
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-05 21:38 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint