default search action
Michael T. Schaub
Person information
- affiliation: RWTH Aachen University, Department of Computer Science, Aachen, Germany
- affiliation (former): University of Oxford, UK
- affiliation (former): Massachusetts Institute of Technology (MIT), Institute for Data, Systems, and Society, Cambridge, MA, USA
- affiliation (former): Université catholique de Louvain, Louvain-la-Neuve, Belgium
- affiliation (former): University of Namur (UNamur), Belgium
- affiliation (former, PhD): Imperial College London, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j22]Alexis Arnaudon, Dominik J. Schindler, Robert L. Peach, Adam Gosztolai, Maxwell Hodges, Michael T. Schaub, Mauricio Barahona:
Algorithm 1044: PyGenStability, a Multiscale Community Detection Framework with Generalized Markov Stability. ACM Trans. Math. Softw. 50(2): 15:1-15:8 (2024) - [c26]Michael Scholkemper, Damin Kühn, Gerion Nabbefeld, Simon Musall, Björn Kampa, Michael T. Schaub:
A Wasserstein Graph Distance Based on Distributions of Probabilistic Node Embeddings. ICASSP 2024: 9751-9755 - [c25]James Shiniti Nagai, Ivan G. Costa, Michael T. Schaub:
Optimal Transport Distances for Directed, Weighted Graphs: A Case Study With Cell-Cell Communication Networks. ICASSP 2024: 9856-9860 - [c24]Vincent P. Grande, Michael T. Schaub:
Disentangling the Spectral Properties of the Hodge Laplacian: not all small Eigenvalues are Equal. ICASSP 2024: 9896-9900 - [c23]Florian Frantzen, Michael T. Schaub:
Learning From Simplicial Data Based on Random Walks and 1D Convolutions. ICLR 2024 - [c22]Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T. Schaub, Petar Velickovic, Bei Wang, Yusu Wang, Guo-Wei Wei, Ghada Zamzmi:
Position: Topological Deep Learning is the New Frontier for Relational Learning. ICML 2024 - [i67]Felix I. Stamm, Michael T. Schaub:
Faster optimal univariate microgaggregation. CoRR abs/2401.02381 (2024) - [i66]Michael Scholkemper, Damin Kühn, Gerion Nabbefeld, Simon Musall, Björn Kampa, Michael T. Schaub:
A Wasserstein Graph Distance Based on Distributions of Probabilistic Node Embeddings. CoRR abs/2401.03913 (2024) - [i65]Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter Chin, Sergio Escalera, Simone Fiorellino, Odin Hoff Gardaa, Gurusankar Gopalakrishnan, Devendra Govil, Josef Hoppe, Maneel Reddy Karri, Jude Khouja, Manuel Lecha, Neal Livesay, Jan Meißner, Soham Mukherjee, Alexander Nikitin, Theodore Papamarkou, Jaro Prílepok, Karthikeyan Natesan Ramamurthy, Paul Rosen, Aldo Guzmán-Sáenz, Alessandro Salatiello, Shreyas N. Samaga, Simone Scardapane, Michael T. Schaub, Luca Scofano, Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga Zaghen, Ghada Zamzmi, Ali Zia, Nina Miolane:
TopoX: A Suite of Python Packages for Machine Learning on Topological Domains. CoRR abs/2402.02441 (2024) - [i64]Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Liò, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T. Schaub, Petar Velickovic, Bei Wang, Yusu Wang, Guo-Wei Wei, Ghada Zamzmi:
Position Paper: Challenges and Opportunities in Topological Deep Learning. CoRR abs/2402.08871 (2024) - [i63]Michaël Fanuel, Antoine Aspeel, Michael T. Schaub, Jean-Charles Delvenne:
Ellipsoidal embeddings of graphs. CoRR abs/2403.15023 (2024) - [i62]Florian Frantzen, Michael T. Schaub:
Learning From Simplicial Data Based on Random Walks and 1D Convolutions. CoRR abs/2404.03434 (2024) - [i61]Josef Hoppe, Michael T. Schaub:
Random Abstract Cell Complexes. CoRR abs/2406.01999 (2024) - [i60]Bastian Epping, Alexandre René, Moritz Helias, Michael T. Schaub:
Graph Neural Networks Do Not Always Oversmooth. CoRR abs/2406.02269 (2024) - [i59]Vincent P. Grande, Michael T. Schaub:
Node-Level Topological Representation Learning on Point Clouds. CoRR abs/2406.02300 (2024) - [i58]Michael Scholkemper, Xinyi Wu, Ali Jadbabaie, Michael T. Schaub:
Residual Connections and Normalization Can Provably Prevent Oversmoothing in GNNs. CoRR abs/2406.02997 (2024) - [i57]Lev Telyatnikov, Guillermo Bernárdez, Marco Montagna, Pavlo Vasylenko, Ghada Zamzmi, Mustafa Hajij, Michael T. Schaub, Nina Miolane, Simone Scardapane, Theodore Papamarkou:
TopoBenchmarkX: A Framework for Benchmarking Topological Deep Learning. CoRR abs/2406.06642 (2024) - 2023
- [j21]Christian Bick, Elizabeth Gross, Heather A. Harrington, Michael T. Schaub:
What Are Higher-Order Networks? SIAM Rev. 65(3): 686-731 (2023) - [c21]Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, AIdo Guzman-Saenz, Tolga Birdal, Michael T. Schaub:
Combinatorial Complexes: Bridging the Gap Between Cell Complexes and Hypergraphs. ACSSC 2023: 799-803 - [c20]T. Mitchell Roddenberry, Vincent P. Grande, Florian Frantzen, Michael T. Schaub, Santiago Segarra:
Signal Processing On Product Spaces. ICASSP 2023: 1-5 - [c19]Vincent Peter Grande, Michael T. Schaub:
Topological Point Cloud Clustering. ICML 2023: 11683-11697 - [c18]Josef Hoppe, Michael T. Schaub:
Representing Edge Flows on Graphs via Sparse Cell Complexes. LoG 2023: 1 - [c17]Donald Loveland, Jiong Zhu, Mark Heimann, Benjamin Fish, Michael T. Schaub, Danai Koutra:
On Performance Discrepancies Across Local Homophily Levels in Graph Neural Networks. LoG 2023: 6 - [c16]Vincent Peter Grande, Michael T. Schaub:
Non-Isotropic Persistent Homology: Leveraging the Metric Dependency of PH. LoG 2023: 17 - [c15]Michael Scholkemper, Michael T. Schaub:
An Optimization-based Approach To Node Role Discovery in Networks: Approximating Equitable Partitions. NeurIPS 2023 - [c14]Mathilde Papillon, Mustafa Hajij, Audun Myers, Florian Frantzen, Ghada Zamzmi, Helen Jenne, Johan Mathe, Josef Hoppe, Michael T. Schaub, Theodore Papamarkou, Aldo Guzmán-Sáenz, Bastian Rieck, Neal Livesay, Tamal K. Dey, Abraham Rabinowitz, Aiden Brent, Alessandro Salatiello, Alexander Nikitin, Ali Zia, Claudio Battiloro, Dmitrii Gavrilev, Georg Bökman, German Magai, Gleb Bazhenov, Guillermo Bernárdez, Indro Spinelli, Jens Agerberg, Kalyan Varma Nadimpalli, Lev Telyatnikov, Luca Scofano, Lucia Testa, Manuel Lecha, Maosheng Yang, Mohammed Hassanin, Odin Hoff Gardaa, Olga Zaghen, Paul Häusner, Paul Snopoff, Pavlo Melnyk, Rubén Ballester, Sadrodin Barikbin, Sergio Escalera, Simone Fiorellino, Henry Kvinge, Jan Meissner, Karthikeyan Natesan Ramamurthy, Michael Scholkemper, Paul Rosen, Robin Walters, Shreyas N. Samaga, Soham Mukherjee, Sophia Sanborn, Tegan Emerson, Timothy Doster, Tolga Birdal, Vincent P. Grande, Abdelwahed Khamis, Simone Scardapane, Suraj Singh, Tatiana Malygina, Yixiao Yue, Nina Miolane:
ICML 2023 Topological Deep Learning Challenge: Design and Results. TAG-ML 2023: 3-8 - [c13]Felix I. Stamm, Michael Scholkemper, Michael T. Schaub, Markus Strohmaier:
Neighborhood Structure Configuration Models. WWW 2023: 210-220 - [i56]Lucille Calmon, Michael T. Schaub, Ginestra Bianconi:
Dirac signal processing of higher-order topological signals. CoRR abs/2301.10137 (2023) - [i55]Alexis Arnaudon, Dominik J. Schindler, Robert L. Peach, Adam Gosztolai, Maxwell Hodges, Michael T. Schaub, Mauricio Barahona:
PyGenStability: Multiscale community detection with generalized Markov Stability. CoRR abs/2303.05385 (2023) - [i54]Vincent P. Grande, Michael T. Schaub:
Topological Point Cloud Clustering. CoRR abs/2303.16716 (2023) - [i53]Michael Scholkemper, Michael T. Schaub:
An Optimization-based Approach To Node Role Discovery in Networks: Approximating Equitable Partitions. CoRR abs/2305.19087 (2023) - [i52]Leonie Neuhäuser, Michael Scholkemper, Francesco Tudisco, Michael T. Schaub:
Learning the effective order of a hypergraph dynamical system. CoRR abs/2306.01813 (2023) - [i51]Donald Loveland, Jiong Zhu, Mark Heimann, Benjamin Fish, Michael T. Schaub, Danai Koutra:
On Performance Discrepancies Across Local Homophily Levels in Graph Neural Networks. CoRR abs/2306.05557 (2023) - [i50]Josef Hoppe, Michael T. Schaub:
Representing Edge Flows on Graphs via Sparse Cell Complexes. CoRR abs/2309.01632 (2023) - [i49]James Shiniti Nagai, Ivan G. Costa, Michael T. Schaub:
Optimal transport distances for directed, weighted graphs: a case study with cell-cell communication networks. CoRR abs/2309.07030 (2023) - [i48]Mathilde Papillon, Mustafa Hajij, Florian Frantzen, Josef Hoppe, Helen Jenne, Johan Mathe, Audun Myers, Theodore Papamarkou, Michael T. Schaub, Ghada Zamzmi, Tolga Birdal, Tamal K. Dey, Tim Doster, Tegan Emerson, Gurusankar Gopalakrishnan, Devendra Govil, Vincent P. Grande, Aldo Guzmán-Sáenz, Henry Kvinge, Neal Livesay, Jan Meissner, Soham Mukherjee, Shreyas N. Samaga, Karthikeyan Natesan Ramamurthy, Maneel Reddy Karri, Paul Rosen, Sophia Sanborn, Michael Scholkemper, Robin Walters, Jens Agerberg, Georg Bökman, Sadrodin Barikbin, Claudio Battiloro, Gleb Bazhenov, Guillermo Bernárdez, Aiden Brent, Sergio Escalera, Simone Fiorellino, Dmitrii Gavrilev, Mohammed Hassanin, Paul Häusner, Odin Hoff Gardaa, Abdelwahed Khamis, Manuel Lecha, German Magai, Tatiana Malygina, Pavlo Melnyk, et al.:
ICML 2023 Topological Deep Learning Challenge : Design and Results. CoRR abs/2309.15188 (2023) - [i47]Vincent P. Grande, Michael T. Schaub:
Non-isotropic Persistent Homology: Leveraging the Metric Dependency of PH. CoRR abs/2310.16437 (2023) - [i46]Vincent P. Grande, Michael T. Schaub:
Disentangling the Spectral Properties of the Hodge Laplacian: Not All Small Eigenvalues Are Equal. CoRR abs/2311.14427 (2023) - [i45]Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Aldo Guzmán-Sáenz, Tolga Birdal, Michael T. Schaub:
Combinatorial Complexes: Bridging the Gap Between Cell Complexes and Hypergraphs. CoRR abs/2312.09504 (2023) - 2022
- [j20]Florian Klimm, Nick S. Jones, Michael T. Schaub:
Modularity Maximization for Graphons. SIAM J. Appl. Math. 82(6): 1930-1952 (2022) - [j19]Maosheng Yang, Elvin Isufi, Michael T. Schaub, Geert Leus:
Simplicial Convolutional Filters. IEEE Trans. Signal Process. 70: 4633-4648 (2022) - [c12]Lucille Calmon, Michael T. Schaub, Ginestra Bianconi:
Higher-order signal processing with the Dirac operator. IEEECONF 2022: 925-929 - [c11]Michael Scholkemper, Michael T. Schaub:
Blind Extraction of Equitable Partitions from Graph Signals. ICASSP 2022: 5832-5836 - [c10]T. Mitchell Roddenberry, Florian Frantzen, Michael T. Schaub, Santiago Segarra:
Hodgelets: Localized Spectral Representations of Flows On Simplicial Complexes. ICASSP 2022: 5922-5926 - [c9]T. Mitchell Roddenberry, Michael T. Schaub, Mustafa Hajij:
Signal Processing On Cell Complexes. ICASSP 2022: 8852-8856 - [c8]Jiong Zhu, Junchen Jin, Donald Loveland, Michael T. Schaub, Danai Koutra:
How does Heterophily Impact the Robustness of Graph Neural Networks?: Theoretical Connections and Practical Implications. KDD 2022: 2637-2647 - [i44]Maosheng Yang, Elvin Isufi, Michael T. Schaub, Geert Leus:
Simplicial Convolutional Filters. CoRR abs/2201.11720 (2022) - [i43]Michael Scholkemper, Michael T. Schaub:
Blind Extraction of Equitable Partitions from Graph Signals. CoRR abs/2203.05407 (2022) - [i42]Donald Loveland, Jiong Zhu, Mark Heimann, Benjamin Fish, Michael T. Schaub, Danai Koutra:
On Graph Neural Network Fairness in the Presence of Heterophilous Neighborhoods. CoRR abs/2207.04376 (2022) - [i41]Leonie Neuhäuser, Fariba Karimi, Jan Bachmann, Markus Strohmaier, Michael T. Schaub:
Improving the visibility of minorities through network growth interventions. CoRR abs/2208.03263 (2022) - [i40]Felix I. Stamm, Michael Scholkemper, Markus Strohmaier, Michael T. Schaub:
Neighborhood Structure Configuration Models. CoRR abs/2210.06843 (2022) - [i39]Lucille Calmon, Michael T. Schaub, Ginestra Bianconi:
Higher-order signal processing with the Dirac operator. CoRR abs/2212.10196 (2022) - 2021
- [j18]Leonie Neuhäuser, Felix I. Stamm, Florian Lemmerich, Michael T. Schaub, Markus Strohmaier:
Simulating systematic bias in attributed social networks and its effect on rankings of minority nodes. Appl. Netw. Sci. 6(1): 86 (2021) - [j17]James Shiniti Nagai, Nils B. Leimkühler, Michael T. Schaub, Rebekka K. Schneider, Ivan G. Costa:
CrossTalkeR: analysis and visualization of ligand-receptorne tworks. Bioinform. 37(22): 4263-4265 (2021) - [j16]Michael T. Schaub, Yu Zhu, Jean-Baptiste Seby, T. Mitchell Roddenberry, Santiago Segarra:
Signal processing on higher-order networks: Livin' on the edge... and beyond. Signal Process. 187: 108149 (2021) - [c7]Florian Frantzen, Jean-Baptiste Seby, Michael T. Schaub:
Outlier Detection for Trajectories via Flow-embeddings. ACSCC 2021: 1568-1572 - [c6]Maosheng Yang, Elvin Isufi, Michael T. Schaub, Geert Leus:
Finite Impulse Response Filters for Simplicial Complexes. EUSIPCO 2021: 2005-2009 - [i38]Florian Klimm, Nick S. Jones, Michael T. Schaub:
Modularity maximisation for graphons. CoRR abs/2101.00503 (2021) - [i37]Michael T. Schaub, Yu Zhu, Jean-Baptiste Seby, T. Mitchell Roddenberry, Santiago Segarra:
Signal Processing on Higher-Order Networks: Livin' on the Edge ... and Beyond. CoRR abs/2101.05510 (2021) - [i36]Maosheng Yang, Elvin Isufi, Michael T. Schaub, Geert Leus:
Finite Impulse Response Filters for Simplicial Complexes. CoRR abs/2103.12587 (2021) - [i35]Christian Bick, Elizabeth Gross, Heather A. Harrington, Michael T. Schaub:
What are higher-order networks? CoRR abs/2104.11329 (2021) - [i34]Leonie Neuhäuser, Renaud Lambiotte, Michael T. Schaub:
Consensus Dynamics and Opinion Formation on Hypergraphs. CoRR abs/2105.01369 (2021) - [i33]Michael Scholkemper, Michael T. Schaub:
Local, global and scale-dependent node roles. CoRR abs/2105.12598 (2021) - [i32]Michael T. Schaub, Jean-Baptiste Seby, Florian Frantzen, T. Mitchell Roddenberry, Yu Zhu, Santiago Segarra:
Signal processing on simplicial complexes. CoRR abs/2106.07471 (2021) - [i31]Jiong Zhu, Junchen Jin, Michael T. Schaub, Danai Koutra:
Improving Robustness of Graph Neural Networks with Heterophily-Inspired Designs. CoRR abs/2106.07767 (2021) - [i30]Leonie Neuhäuser, Renaud Lambiotte, Michael T. Schaub:
Consensus dynamics on temporal hypergraphs. CoRR abs/2109.04985 (2021) - [i29]T. Mitchell Roddenberry, Florian Frantzen, Michael T. Schaub, Santiago Segarra:
Hodgelets: Localized Spectral Representations of Flows on Simplicial Complexes. CoRR abs/2109.08728 (2021) - [i28]T. Mitchell Roddenberry, Michael T. Schaub, Mustafa Hajij:
Signal Processing on Cell Complexes. CoRR abs/2110.05614 (2021) - [i27]Florian Frantzen, Jean-Baptiste Seby, Michael T. Schaub:
Outlier Detection for Trajectories via Flow-embeddings. CoRR abs/2111.13235 (2021) - 2020
- [j15]Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lippner, Ali Jadbabaie:
Random Walks on Simplicial Complexes and the Normalized Hodge 1-Laplacian. SIAM Rev. 62(2): 353-391 (2020) - [j14]Michael T. Schaub, Santiago Segarra, John N. Tsitsiklis:
Blind Identification of Stochastic Block Models from Dynamical Observations. SIAM J. Math. Data Sci. 2(2): 335-367 (2020) - [j13]Marco Avella-Medina, Francesca Parise, Michael T. Schaub, Santiago Segarra:
Centrality Measures for Graphons: Accounting for Uncertainty in Networks. IEEE Trans. Netw. Sci. Eng. 7(1): 520-537 (2020) - [j12]Yu Zhu, Michael T. Schaub, Ali Jadbabaie, Santiago Segarra:
Network Inference From Consensus Dynamics With Unknown Parameters. IEEE Trans. Signal Inf. Process. over Networks 6: 300-315 (2020) - [j11]T. Mitchell Roddenberry, Michael T. Schaub, Hoi-To Wai, Santiago Segarra:
Exact Blind Community Detection From Signals on Multiple Graphs. IEEE Trans. Signal Process. 68: 5016-5030 (2020) - [c5]Leonie Neuhäuser, Michael T. Schaub, Andrew Mellor, Renaud Lambiotte:
Opinion Dynamics with Multi-body Interactions. NetGCooP 2020: 261-271 - [i26]T. Mitchell Roddenberry, Michael T. Schaub, Hoi-To Wai, Santiago Segarra:
Exact Blind Community Detection from Signals on Multiple Graphs. CoRR abs/2001.10944 (2020) - [i25]Michael T. Schaub, Leto Peel:
Hierarchical community structure in networks. CoRR abs/2009.07196 (2020) - [i24]Leto Peel, Michael T. Schaub:
Detectability of hierarchical communities in networks. CoRR abs/2009.07525 (2020) - [i23]Felix I. Stamm, Leonie Neuhäuser, Florian Lemmerich, Michael T. Schaub, Markus Strohmaier:
Systematic edge uncertainty in attributed social networks and its effects on rankings of minority nodes. CoRR abs/2010.11546 (2020)
2010 – 2019
- 2019
- [c4]Michael T. Schaub, Santiago Segarra, Hoi-To Wai:
Spectral Partitioning of Time-varying Networks with Unobserved Edges. ICASSP 2019: 4938-4942 - [c3]Junteng Jia, Michael T. Schaub, Santiago Segarra, Austin R. Benson:
Graph-based Semi-Supervised & Active Learning for Edge Flows. KDD 2019: 761-771 - [i22]Michael T. Schaub, Santiago Segarra, Hoi-To Wai:
Spectral partitioning of time-varying networks with unobserved edges. CoRR abs/1904.11930 (2019) - [i21]Junteng Jia, Michael T. Schaub, Santiago Segarra, Austin R. Benson:
Graph-based Semi-Supervised & Active Learning for Edge Flows. CoRR abs/1905.07451 (2019) - [i20]Michael T. Schaub, Santiago Segarra, John N. Tsitsiklis:
Blind identification of stochastic block models from dynamical observations. CoRR abs/1905.09107 (2019) - [i19]Yu Zhu, Michael T. Schaub, Ali Jadbabaie, Santiago Segarra:
Network Inference from Consensus Dynamics with Unknown Parameters. CoRR abs/1908.01393 (2019) - 2018
- [j10]Ernesto Estrada, Jean-Charles Delvenne, Naomichi Hatano, José L. Mateos, Ralf Metzler, Alejandro P. Riascos, Michael T. Schaub:
Random multi-hopper model: super-fast random walks on graphs. J. Complex Networks 6(3): 382-403 (2018) - [j9]Mauro Faccin, Michael T. Schaub, Jean-Charles Delvenne:
Entrograms and coarse graining of dynamics on complex networks. J. Complex Networks 6(5): 661-678 (2018) - [j8]Yazan N. Billeh, Michael T. Schaub:
Feedforward architectures driven by inhibitory interactions. J. Comput. Neurosci. 44(1): 63-74 (2018) - [j7]Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, Jon M. Kleinberg:
Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. USA 115(48): E11221-E11230 (2018) - [c2]Michael T. Schaub, Santiago Segarra:
Flow Smoothing and Denoising: Graph Signal Processing in the Edge-Space. GlobalSIP 2018: 735-739 - [i18]Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, Jon M. Kleinberg:
Simplicial Closure and Higher-order Link Prediction. CoRR abs/1802.06916 (2018) - [i17]Michael T. Schaub, Jean-Charles Delvenne, Renaud Lambiotte, Mauricio Barahona:
Multiscale dynamical embeddings of complex networks. CoRR abs/1804.03733 (2018) - [i16]Michael T. Schaub, Jean-Charles Delvenne, Renaud Lambiotte, Mauricio Barahona:
Structured networks and coarse-grained descriptions: a dynamical perspective. CoRR abs/1804.06268 (2018) - [i15]Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lippner, Ali Jadbabaie:
Random Walks on Simplicial Complexes and the normalized Hodge Laplacian. CoRR abs/1807.05044 (2018) - [i14]Michael T. Schaub, Santiago Segarra:
Flow Smoothing and Denoising: Graph Signal Processing in the Edge-Space. CoRR abs/1808.02111 (2018) - 2017
- [j6]Michael T. Schaub, Jean-Charles Delvenne, Martin Rosvall, Renaud Lambiotte:
The many facets of community detection in complex networks. Appl. Netw. Sci. 2: 4 (2017) - [j5]Michael T. Schaub, Maguy Trefois, Paul Van Dooren, Jean-Charles Delvenne:
Sparse Matrix Factorizations for Fast Linear Solvers with Application to Laplacian Systems. SIAM J. Matrix Anal. Appl. 38(2): 505-529 (2017) - [c1]Santiago Segarra, Michael T. Schaub, Ali Jadbabaie:
Network inference from consensus dynamics. CDC 2017: 3212-3217 - [i13]Marco Avella-Medina, Francesca Parise, Michael T. Schaub, Santiago Segarra:
Centrality measures for graphons. CoRR abs/1707.09350 (2017) - [i12]Santiago Segarra, Michael T. Schaub, Ali Jadbabaie:
Network Inference from Consensus Dynamics. CoRR abs/1708.05329 (2017) - [i11]Mauro Faccin, Michael T. Schaub, Jean-Charles Delvenne:
Entrograms and coarse graining of dynamics on complex networks. CoRR abs/1711.01987 (2017) - [i10]Martin Rosvall, Jean-Charles Delvenne, Michael T. Schaub, Renaud Lambiotte:
Different approaches to community detection. CoRR abs/1712.06468 (2017) - 2016
- [j4]Karol A. Bacik, Michael T. Schaub, Mariano Beguerisse-Díaz, Yazan N. Billeh, Mauricio Barahona:
Flow-Based Network Analysis of the Caenorhabditis elegans Connectome. PLoS Comput. Biol. 12(8) (2016) - [i9]Vsevolod Salnikov, Michael T. Schaub, Renaud Lambiotte:
Using higher-order Markov models to reveal flow-based communities in networks. CoRR abs/1601.03516 (2016) - [i8]Michael T. Schaub, Maguy Trefois, Paul Van Dooren, Jean-Charles Delvenne:
Sparse matrix factorizations for fast linear solvers with application to Laplacian systems. CoRR abs/1605.09148 (2016) - [i7]Michael T. Schaub, Neave O'Clery, Yazan N. Billeh, Jean-Charles Delvenne, Renaud Lambiotte, Mauricio Barahona:
Graph partitions and cluster synchronization in networks of oscillators. CoRR abs/1608.04283 (2016) - [i6]Michael T. Schaub, Jean-Charles Delvenne, Martin Rosvall, Renaud Lambiotte:
The many facets of community detection in complex networks. CoRR abs/1611.07769 (2016) - [i5]Ernesto Estrada, Jean-Charles Delvenne, Naomichi Hatano, José L. Mateos, Ralf Metzler, Alejandro P. Riascos, Michael T. Schaub:
Random Multi-Hopper Model. Super-Fast Random Walks on Graphs. CoRR abs/1612.08631 (2016) - 2015
- [j3]Michael T. Schaub, Yazan N. Billeh, Costas A. Anastassiou, Christof Koch, Mauricio Barahona:
Emergence of Slow-Switching Assemblies in Structured Neuronal Networks. PLoS Comput. Biol. 11(7) (2015) - 2014
- [j2]Michael T. Schaub, Jörg Lehmann, Sophia N. Yaliraki, Mauricio Barahona:
Structure of complex networks: Quantifying edge-to-edge relations by failure-induced flow redistribution. Netw. Sci. 2(1): 66-89 (2014) - 2013
- [i4]Michael T. Schaub, Jörg Lehmann, Sophia N. Yaliraki, Mauricio Barahona:
Structure of complex networks: Quantifying edge-to-edge relations by failure-induced flow redistribution. CoRR abs/1303.6241 (2013) - [i3]Jean-Charles Delvenne, Michael T. Schaub, Sophia N. Yaliraki, Mauricio Barahona:
The stability of a graph partition: A dynamics-based framework for community detection. CoRR abs/1308.1605 (2013) - 2012
- [j1]Michael T. Schaub, Simon R. Schultz:
The Ising decoder: reading out the activity of large neural ensembles. J. Comput. Neurosci. 32(1): 101-118 (2012) - 2011
- [i2]Michael T. Schaub, Jean-Charles Delvenne, Sophia N. Yaliraki, Mauricio Barahona:
Markov dynamics as a zooming lens for multiscale community detection: non clique-like communities and the field-of-view limit. CoRR abs/1109.5593 (2011) - [i1]Michael T. Schaub, Renaud Lambiotte, Mauricio Barahona:
Coding of Markov dynamics for multiscale community detection in complex networks. CoRR abs/1109.6642 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:06 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint