default search action
Clayton Scott
Person information
- affiliation: University of Michigan, Ann Arbor, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j26]Yutong Wang, Clayton Scott:
Unified Binary and Multiclass Margin-Based Classification. J. Mach. Learn. Res. 25: 143:1-143:51 (2024) - [c51]Aditya Gangrade, Aditya Gopalan, Venkatesh Saligrama, Clayton Scott:
Testing the Feasibility of Linear Programs with Bandit Feedback. ICML 2024 - [c50]Matt Raymond, Angela Violi, Clayton Scott:
Joint Optimization of Piecewise Linear Ensembles. MLSP 2024: 1-6 - [i38]Matt Raymond, Jacob Charles Saldinger, Paolo Elvati, Clayton Scott, Angela Violi:
Universal Feature Selection for Simultaneous Interpretability of Multitask Datasets. CoRR abs/2403.14466 (2024) - [i37]Matt Raymond, Angela Violi, Clayton Scott:
Joint Optimization of Piecewise Linear Ensembles. CoRR abs/2405.00303 (2024) - [i36]Aditya Gangrade, Aditya Gopalan, Venkatesh Saligrama, Clayton Scott:
Testing the Feasibility of Linear Programs with Bandit Feedback. CoRR abs/2406.15648 (2024) - [i35]Yilun Zhu, Jianxin Zhang, Aditya Gangrade, Clayton Scott:
Label Noise: Ignorance Is Bliss. CoRR abs/2411.00079 (2024) - [i34]Hrithik Ravi, Clayton Scott, Daniel Soudry, Yutong Wang:
The Implicit Bias of Gradient Descent on Separable Multiclass Data. CoRR abs/2411.01350 (2024) - 2023
- [c49]Yutong Wang, Clayton Scott:
On Classification-Calibration of Gamma-Phi Losses. COLT 2023: 4929-4951 - [c48]Yilun Zhu, Aaron Fjeldsted, Darren Holland, George Landon, Azaree Lintereur, Clayton Scott:
Mixture Proportion Estimation Beyond Irreducibility. ICML 2023: 42962-42982 - [i33]Yutong Wang, Clayton D. Scott:
On Classification-Calibration of Gamma-Phi Losses. CoRR abs/2302.07321 (2023) - [i32]Jianxin Zhang, Clayton Scott:
Label Embedding by Johnson-Lindenstrauss Matrices. CoRR abs/2305.19470 (2023) - [i31]Yilun Zhu, Aaron Fjeldsted, Darren Holland, George Landon, Azaree Lintereur, Clayton Scott:
Mixture Proportion Estimation Beyond Irreducibility. CoRR abs/2306.01253 (2023) - [i30]Yutong Wang, Clayton Scott:
Unified Binary and Multiclass Margin-Based Classification. CoRR abs/2311.17778 (2023) - 2022
- [c47]Yutong Wang, Clayton Scott:
VC dimension of partially quantized neural networks in the overparametrized regime. ICLR 2022 - [c46]Yutong Wang, Clayton Scott:
Consistent Interpolating Ensembles via the Manifold-Hilbert Kernel. NeurIPS 2022 - [c45]Jianxin Zhang, Yutong Wang, Clayton Scott:
Learning from Label Proportions by Learning with Label Noise. NeurIPS 2022 - [i29]Jianxin Zhang, Yutong Wang, Clayton Scott:
Learning from Label Proportions by Learning with Label Noise. CoRR abs/2203.02496 (2022) - [i28]Yutong Wang, Clayton D. Scott:
Consistent Interpolating Ensembles via the Manifold-Hilbert Kernel. CoRR abs/2205.09342 (2022) - 2021
- [j25]Gilles Blanchard, Aniket Anand Deshmukh, Ürün Dogan, Gyemin Lee, Clayton Scott:
Domain Generalization by Marginal Transfer Learning. J. Mach. Learn. Res. 22: 2:1-2:55 (2021) - [c44]Yutong Wang, Clayton Scott:
An exact solver for the Weston-Watkins SVM subproblem. ICML 2021: 10894-10904 - [i27]Yutong Wang, Clayton D. Scott:
An exact solver for the Weston-Watkins SVM subproblem. CoRR abs/2102.05640 (2021) - [i26]Yutong Wang, Clayton D. Scott:
VC dimension of partially quantized neural networks in the overparametrized regime. CoRR abs/2110.02456 (2021) - 2020
- [c43]Han Bao, Clayton Scott, Masashi Sugiyama:
Calibrated Surrogate Losses for Adversarially Robust Classification. COLT 2020: 408-451 - [c42]Alexander Ritchie, Robert A. Vandermeulen, Clayton D. Scott:
Consistent Estimation of Identifiable Nonparametric Mixture Models from Grouped Observations. NeurIPS 2020 - [c41]Clayton Scott, Jianxin Zhang:
Learning from Label Proportions: A Mutual Contamination Framework. NeurIPS 2020 - [c40]Yutong Wang, Clayton Scott:
Weston-Watkins Hinge Loss and Ordered Partitions. NeurIPS 2020 - [i25]Han Bao, Clayton Scott, Masashi Sugiyama:
Calibrated Surrogate Losses for Adversarially Robust Classification. CoRR abs/2005.13748 (2020) - [i24]Clayton Scott, Jianxin Zhang:
Learning from Label Proportions: A Mutual Contamination Framework. CoRR abs/2006.07330 (2020) - [i23]Yutong Wang, Clayton D. Scott:
Weston-Watkins Hinge Loss and Ordered Partitions. CoRR abs/2006.07346 (2020) - [i22]Alexander Ritchie, Robert A. Vandermeulen, Clayton D. Scott:
Consistent Estimation of Identifiable Nonparametric Mixture Models from Grouped Observations. CoRR abs/2006.07459 (2020) - [i21]Alexander Ritchie, Laura Balzano, Clayton D. Scott:
Supervised PCA: A Multiobjective Approach. CoRR abs/2011.05309 (2020)
2010 – 2019
- 2019
- [j24]Julian Katz-Samuels, Gilles Blanchard, Clayton Scott:
Decontamination of Mutual Contamination Models. J. Mach. Learn. Res. 20: 41:1-41:57 (2019) - [c39]Julian Katz-Samuels, Clayton Scott:
Top Feasible Arm Identification. AISTATS 2019: 1593-1601 - [c38]Clayton Scott:
A Generalized Neyman-Pearson Criterion for Optimal Domain Adaptation. ALT 2019: 738-761 - [c37]Alexander Ritchie, Clayton D. Scott, Laura Balzano, Daniel Kessler, Chandra Sekhar Sripada:
Supervised Principal Component Analysis Via Manifold Optimization. DSW 2019: 6-10 - [i20]Aniket Anand Deshmukh, Yunwen Lei, Srinagesh Sharma, Ürün Dogan, James W. Cutler, Clayton Scott:
A Generalization Error Bound for Multi-class Domain Generalization. CoRR abs/1905.10392 (2019) - [i19]Yuren Zhong, Aniket Anand Deshmukh, Clayton Scott:
PAC Reinforcement Learning without Real-World Feedback. CoRR abs/1909.10449 (2019) - [i18]Clayton Scott, Jianxin Zhang:
Learning from Multiple Corrupted Sources, with Application to Learning from Label Proportions. CoRR abs/1910.04665 (2019) - 2018
- [j23]Gopal Nataraj, Jon-Fredrik Nielsen, Clayton D. Scott, Jeffrey A. Fessler:
Dictionary-Free MRI PERK: Parameter Estimation via Regression with Kernels. IEEE Trans. Medical Imaging 37(9): 2103-2114 (2018) - [c36]Julian Katz-Samuels, Clayton Scott:
Nonparametric Preference Completion. AISTATS 2018: 632-641 - [c35]Julian Katz-Samuels, Clayton Scott:
Feasible Arm Identification. ICML 2018: 2540-2548 - [i17]Clayton Scott:
A Generalized Neyman-Pearson Criterion for Optimal Domain Adaptation. CoRR abs/1810.01545 (2018) - [i16]Aniket Anand Deshmukh, Srinagesh Sharma, James W. Cutler, Mark Moldwin, Clayton Scott:
Simple Regret Minimization for Contextual Bandits. CoRR abs/1810.07371 (2018) - 2017
- [j22]Efren Cruz Cortes, Clayton Scott:
Sparse Approximation of a Kernel Mean. IEEE Trans. Signal Process. 65(5): 1310-1323 (2017) - [c34]Aniket Anand Deshmukh, Ürün Dogan, Clayton Scott:
Multi-Task Learning for Contextual Bandits. NIPS 2017: 4848-4856 - [i15]Max Yi Ren, Clayton Scott:
Adaptive Questionnaires for Direct Identification of Optimal Product Design. CoRR abs/1701.01231 (2017) - [i14]Aniket Anand Deshmukh, Ürün Dogan, Clayton Scott:
Multi-Task Learning for Contextual Bandits. CoRR abs/1705.08618 (2017) - [i13]Julian Katz-Samuels, Clayton Scott:
Nonparametric Preference Completion. CoRR abs/1705.08621 (2017) - [i12]Efrén Cruz Cortés, Clayton Scott:
Consistent Kernel Density Estimation with Non-Vanishing Bandwidth. CoRR abs/1705.08921 (2017) - 2016
- [j21]Hossein Keshavarz, Clayton Scott, XuanLong Nguyen:
On the consistency of inversion-free parameter estimation for Gaussian random fields. J. Multivar. Anal. 150: 245-266 (2016) - [c33]Harish G. Ramaswamy, Clayton Scott, Ambuj Tewari:
Mixture Proportion Estimation via Kernel Embeddings of Distributions. ICML 2016: 2052-2060 - [i11]Hossein Keshavarz, Clayton Scott, XuanLong Nguyen:
On the consistency of inversion-free parameter estimation for Gaussian random fields. CoRR abs/1601.03822 (2016) - [i10]Harish G. Ramaswamy, Clayton Scott, Ambuj Tewari:
Mixture Proportion Estimation via Kernel Embedding of Distributions. CoRR abs/1603.02501 (2016) - 2015
- [c32]Clayton Scott:
A Rate of Convergence for Mixture Proportion Estimation, with Application to Learning from Noisy Labels. AISTATS 2015 - [i9]Robert A. Vandermeulen, Clayton D. Scott:
On The Identifiability of Mixture Models from Grouped Samples. CoRR abs/1502.06644 (2015) - [i8]Efren Cruz Cortes, Clayton Scott:
Sparse Approximation of a Kernel Mean. CoRR abs/1503.00323 (2015) - [i7]Hossein Keshavarz, Clayton Scott, XuanLong Nguyen:
Optimal change point detection in Gaussian processes. CoRR abs/1506.01338 (2015) - 2014
- [j20]Takanori Watanabe, Daniel Kessler, Clayton D. Scott, Michael Angstadt, Chandra Sekhar Sripada:
Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. NeuroImage 96: 183-202 (2014) - [c31]Gilles Blanchard, Clayton Scott:
Decontamination of Mutually Contaminated Models. AISTATS 2014: 1-9 - [c30]Tyler Sanderson, Clayton Scott:
Class Proportion Estimation with Application to Multiclass Anomaly Rejection. AISTATS 2014: 850-858 - [c29]Efren Cruz Cortes, Clayton Scott:
Scalable sparse approximation of a sample mean. ICASSP 2014: 5237-5241 - [c28]Takanori Watanabe, Clayton D. Scott, Daniel Kessler, Michael Angstadt, Chandra Sekhar Sripada:
Scalable fused Lasso SVM for connectome-based disease prediction. ICASSP 2014: 5989-5993 - [c27]Robert A. Vandermeulen, Clayton D. Scott:
Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space. NIPS 2014: 433-441 - 2013
- [j19]Chandra Sekhar Sripada, Daniel Kessler, Robert C. Welsh, Michael Angstadt, Israel Liberzon, K. Luan Phan, Clayton D. Scott:
Distributed effects of methylphenidate on the network structure of the resting brain: A connectomic pattern classification analysis. NeuroImage 81: 213-221 (2013) - [j18]Gowtham Bellala, Jason Stanley, Suresh K. Bhavnani, Clayton Scott:
A Rank-Based Approach to Active Diagnosis. IEEE Trans. Pattern Anal. Mach. Intell. 35(9): 2078-2090 (2013) - [c26]Clayton Scott, Gilles Blanchard, Gregory Handy:
Classification with Asymmetric Label Noise: Consistency and Maximal Denoising. COLT 2013: 489-511 - [c25]Robert A. Vandermeulen, Clayton D. Scott:
Consistency of Robust Kernel Density Estimators. COLT 2013: 568-591 - [i6]Clayton Scott, Gilles Blanchard, Gregory Handy, Sara Pozzi, Marek Flaska:
Classification with Asymmetric Label Noise: Consistency and Maximal Denoising. CoRR abs/1303.1208 (2013) - [i5]Tyler Sanderson, Clayton Scott:
Semi-supervised Classification with Anomaly Rejection. CoRR abs/1306.5056 (2013) - 2012
- [j17]Gyemin Lee, Clayton Scott:
EM algorithms for multivariate Gaussian mixture models with truncated and censored data. Comput. Stat. Data Anal. 56(9): 2816-2829 (2012) - [j16]JooSeuk Kim, Clayton D. Scott:
Robust kernel density estimation. J. Mach. Learn. Res. 13: 2529-2565 (2012) - [j15]Gowtham Bellala, Suresh K. Bhavnani, Clayton Scott:
Group-Based Active Query Selection for Rapid Diagnosis in Time-Critical Situations. IEEE Trans. Inf. Theory 58(1): 459-478 (2012) - [c24]Takanori Watanabe, Clayton D. Scott:
Spatial Confidence Regions for Quantifying and Visualizing Registration Uncertainty. WBIR 2012: 120-130 - [c23]Gyemin Lee, Lloyd Stoolman, Clayton Scott:
Transfer Learning for Auto-gating of Flow Cytometry Data. ICML Unsupervised and Transfer Learning 2012: 155-166 - [i4]Gowtham Bellala, Jason Stanley, Clayton Scott, Suresh K. Bhavnani:
Active Diagnosis via AUC Maximization: An Efficient Approach for Multiple Fault Identification in Large Scale, Noisy Networks. CoRR abs/1202.3701 (2012) - 2011
- [j14]Gyemin Lee, William Finn, Clayton Scott:
Statistical file matching of flow cytometry data. J. Biomed. Informatics 44(4): 663-676 (2011) - [j13]Daniel J. Lingenfelter, Jeffrey A. Fessler, Clayton D. Scott, Zhong He:
Asymptotic Source Detection Performance of Gamma-Ray Imaging Systems Under Model Mismatch. IEEE Trans. Signal Process. 59(11): 5141-5151 (2011) - [c22]Clayton Scott:
Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs. ICML 2011: 153-160 - [c21]JooSeuk Kim, Clayton D. Scott:
On the Robustness of Kernel Density M-Estimators. ICML 2011: 697-704 - [c20]Gilles Blanchard, Gyemin Lee, Clayton Scott:
Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. NIPS 2011: 2178-2186 - [c19]Gowtham Bellala, Jason Stanley, Clayton Scott, Suresh K. Bhavnani:
Active Diagnosis via AUC Maximization: An Efficient Approach for Multiple Fault Identification in Large Scale, Noisy Networks. UAI 2011: 35-42 - [c18]Gowtham Bellala, Suresh K. Bhavnani, Clayton Scott:
Active Diagnosis under Persistent Noise with Unknown Noise Distribution: A Rank-Based Approach. AISTATS 2011: 155-163 - [i3]JooSeuk Kim, Clayton D. Scott:
Robust Kernel Density Estimation. CoRR abs/1107.3133 (2011) - 2010
- [j12]Gilles Blanchard, Gyemin Lee, Clayton Scott:
Semi-Supervised Novelty Detection. J. Mach. Learn. Res. 11: 2973-3009 (2010) - [j11]JooSeuk Kim, Clayton D. Scott:
L2 Kernel Classification. IEEE Trans. Pattern Anal. Mach. Intell. 32(10): 1822-1831 (2010) - [j10]Mark A. Davenport, Richard G. Baraniuk, Clayton D. Scott:
Tuning Support Vector Machines for Minimax and Neyman-Pearson Classification. IEEE Trans. Pattern Anal. Mach. Intell. 32(10): 1888-1898 (2010) - [j9]Gyemin Lee, Clayton Scott:
Nested support vector machines. IEEE Trans. Signal Process. 58(3): 1648-1660 (2010) - [j8]Daniel J. Lingenfelter, Jeffrey A. Fessler, Clayton D. Scott, Zhong He:
Benefits of position-sensitive detectors for radioactive source detection. IEEE Trans. Signal Process. 58(9): 4473-4483 (2010) - [c17]Gowtham Bellala, Suresh K. Bhavnani, Clayton Scott:
Extensions of Generalized Binary Search to Group Identification and Exponential Costs. NIPS 2010: 154-162 - [i2]Gowtham Bellala, Suresh K. Bhavnani, Clayton Scott:
Query Learning with Exponential Query Costs. CoRR abs/1002.4019 (2010)
2000 – 2009
- 2009
- [c16]Clayton Scott, Gilles Blanchard:
Novelty detection: Unlabeled data definitely help. AISTATS 2009: 464-471 - [i1]Gowtham Bellala, Suresh K. Bhavnani, Clayton Scott:
Group-based Query Learning for rapid diagnosis in time-critical situations. CoRR abs/0911.4511 (2009) - 2008
- [c15]Aarti Singh, Robert D. Nowak, Clayton D. Scott:
Adaptive Hausdorff Estimation of Density Level Sets. COLT 2008: 491-502 - [c14]Frederic Thouin, Mark Coates, Brian Eriksson, Robert D. Nowak, Clayton D. Scott:
Learning to satisfy. ICASSP 2008: 1981-1984 - [c13]Gyemin Lee, Clayton Scott:
Nested support vector machines. ICASSP 2008: 1985-1988 - [c12]JooSeuk Kim, Clayton D. Scott:
Robust kernel density estimation. ICASSP 2008: 3381-3384 - [c11]Parminder Chhabra, Clayton D. Scott, Eric D. Kolaczyk, Mark Crovella:
Distributed Spatial Anomaly Detection. INFOCOM 2008: 1705-1713 - [c10]JooSeuk Kim, Clayton D. Scott:
Performance analysis for L_2 kernel classification. NIPS 2008: 833-840 - 2007
- [j7]Clayton Scott:
Performance Measures for Neyman-Pearson Classification. IEEE Trans. Inf. Theory 53(8): 2852-2863 (2007) - [j6]Clayton D. Scott, Mark A. Davenport:
Regression Level Set Estimation Via Cost-Sensitive Classification. IEEE Trans. Signal Process. 55(6-1): 2752-2757 (2007) - [c9]Gyemin Lee, Clayton Scott:
The One Class Support Vector Machine Solution Path. ICASSP (2) 2007: 521-524 - 2006
- [j5]Clayton D. Scott, Robert D. Nowak:
Learning Minimum Volume Sets. J. Mach. Learn. Res. 7: 665-704 (2006) - [j4]Clayton D. Scott, Robert D. Nowak:
Robust Contour Matching Via the Order-Preserving Assignment Problem. IEEE Trans. Image Process. 15(7): 1831-1838 (2006) - [j3]Clayton D. Scott, Robert D. Nowak:
Minimax-optimal classification with dyadic decision trees. IEEE Trans. Inf. Theory 52(4): 1335-1353 (2006) - [c8]Mark A. Davenport, Richard G. Baraniuk, Clayton D. Scott:
Controlling False Alarms With Support Vector Machines. ICASSP (5) 2006: 589-592 - 2005
- [j2]Clayton D. Scott, Robert D. Nowak:
A Neyman-Pearson approach to statistical learning. IEEE Trans. Inf. Theory 51(11): 3806-3819 (2005) - [c7]Clayton D. Scott, Robert D. Nowak:
Learning Minimum Volume Sets. NIPS 2005: 1209-1216 - 2004
- [j1]Clayton D. Scott, Robert D. Nowak:
TEMPLAR: a wavelet-based framework for pattern learning and analysis. IEEE Trans. Signal Process. 52(8): 2264-2274 (2004) - [c6]Clayton D. Scott, Robert D. Nowak:
On the Adaptive Properties of Decision Trees. NIPS 2004: 1225-1232 - 2003
- [c5]Clayton D. Scott, Rebecca M. Willett, Robert D. Nowak:
CORT: classification or regression trees. ICASSP (6) 2003: 153-156 - [c4]Clayton D. Scott, Robert D. Nowak:
Near-Minimax Optimal Classification with Dyadic Classification Trees. NIPS 2003: 1117-1124 - 2002
- [c3]Clayton D. Scott, Robert D. Nowak:
Dyadic Classification Trees via Structural Risk Minimization. NIPS 2002: 359-366 - 2000
- [c2]Clayton D. Scott, Robert D. Nowak:
Pattern Extraction and Synthesis Using a Hierarchical Wavelet-Based Framework. ICIP 2000: 383-386 - [c1]Clayton D. Scott, Robert D. Nowak:
A Novel Hierarchical Wavelet-Based Framework for Pattern Analysis and Synthesis. SSIAI 2000: 242-246
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-12 21:55 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint