default search action
Johannes Fürnkranz
Person information
- affiliation: Johannes Kepler University of Linz, Austria
- affiliation (former): TU Darmstadt, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j52]Michael Rapp, Johannes Fürnkranz, Eyke Hüllermeier:
On the efficient implementation of classification rule learning. Adv. Data Anal. Classif. 18(4): 851-892 (2024) - [j51]Martin Atzmueller, Johannes Fürnkranz, Tomás Kliegr, Ute Schmid:
Explainable and interpretable machine learning and data mining. Data Min. Knowl. Discov. 38(5): 2571-2595 (2024) - [j50]Stefan Heid, Jonas Hanselle, Johannes Fürnkranz, Eyke Hüllermeier:
Learning decision catalogues for situated decision making: The case of scoring systems. Int. J. Approx. Reason. 171: 109190 (2024) - [j49]Anna-Christina Glock, Florian Sobieczky, Johannes Fürnkranz, Peter Filzmoser, Martin Jech:
Predictive change point detection for heterogeneous data. Neural Comput. Appl. 36(26): 16071-16096 (2024) - [c137]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Learning With Generalised Card Representations for "Magic: The Gathering". CoG 2024: 1-8 - [c136]Anna-Christina Glock, Johannes Fürnkranz:
Dynamic Time Warping for Phase Recognition in Tribological Sensor Data. DaWaK 2024: 245-250 - [c135]Florian Beck, Johannes Fürnkranz, Phuong Huynh Van Quoc:
When Characteristic Rule-based Models Should be Preferred over Discriminative Ones. ITAT 2024: 52-59 - [c134]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Efficiently Training Neural Networks for Imperfect Information Games by Sampling Information Sets. KI 2024: 17-29 - [i43]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Neural Network-based Information Set Weighting for Playing Reconnaissance Blind Chess. CoRR abs/2407.05864 (2024) - [i42]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Efficiently Training Neural Networks for Imperfect Information Games by Sampling Information Sets. CoRR abs/2407.05876 (2024) - [i41]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Learning With Generalised Card Representations for "Magic: The Gathering". CoRR abs/2407.05879 (2024) - [i40]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Contrastive Learning of Preferences with a Contextual InfoNCE Loss. CoRR abs/2407.05898 (2024) - [i39]Jonas Hanselle, Stefan Heid, Johannes Fürnkranz, Eyke Hüllermeier:
Probabilistic Scoring Lists for Interpretable Machine Learning. CoRR abs/2407.21535 (2024) - 2023
- [j48]Phuong Huynh Van Quoc, Johannes Fürnkranz, Florian Beck:
Efficient learning of large sets of locally optimal classification rules. Mach. Learn. 112(2): 571-610 (2023) - [j47]Eneldo Loza Mencía, Moritz Kulessa, Simon Bohlender, Johannes Fürnkranz:
Tree-based dynamic classifier chains. Mach. Learn. 112(11): 4129-4165 (2023) - [c133]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Weighting Information Sets with Siamese Neural Networks in Reconnaissance Blind Chess. CoG 2023: 1-8 - [c132]Jonas Hanselle, Johannes Fürnkranz, Eyke Hüllermeier:
Probabilistic Scoring Lists for Interpretable Machine Learning. DS 2023: 189-203 - [c131]Florian Beck, Johannes Fürnkranz, Phuong Huynh Van Quoc:
Generalizing Conjunctive and Disjunctive Rule Learning to Learning m-of-n Concepts. ITAT 2023: 8-13 - [c130]Florian Beck, Johannes Fürnkranz, Phuong Huynh Van Quoc:
Layerwise Learning of Mixed Conjunctive and Disjunctive Rule Sets. RuleML+RR 2023: 95-109 - [i38]Phuong Huynh Van Quoc, Johannes Fürnkranz, Florian Beck:
Efficient learning of large sets of locally optimal classification rules. CoRR abs/2301.09936 (2023) - [i37]Anna-Christina Glock, Florian Sobieczky, Johannes Fürnkranz, Peter Filzmoser, Martin Jech:
Predictive change point detection for heterogeneous data. CoRR abs/2305.06630 (2023) - 2022
- [j46]Antonella Plaia, Simona Buscemi, Johannes Fürnkranz, Eneldo Loza Mencía:
Comparing Boosting and Bagging for Decision Trees of Rankings. J. Classif. 39(1): 78-99 (2022) - [j45]Eyke Hüllermeier, Marcel Wever, Eneldo Loza Mencía, Johannes Fürnkranz, Michael Rapp:
A flexible class of dependence-aware multi-label loss functions. Mach. Learn. 111(2): 713-737 (2022) - [c129]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Supervised and Reinforcement Learning from Observations in Reconnaissance Blind Chess. CoG 2022: 608-611 - [c128]Phuong Huynh Van Quoc, Florian Beck, Johannes Fürnkranz:
Incremental Update of Locally Optimal Classification Rules. DS 2022: 104-113 - [c127]Johannes Fürnkranz:
Towards Deep and Interpretable Rule Learning (invited paper). ITAT 2022: 2 - [c126]Florian Beck, Johannes Fürnkranz, Phuong Huynh Van Quoc:
On the Incremental Construction of Deep Rule Theories. ITAT 2022: 21-27 - [c125]Aïssatou Diallo, Johannes Fürnkranz:
Unsupervised Alignment of Distributional Word Embeddings. KI 2022: 60-74 - [i36]Aïssatou Diallo, Johannes Fürnkranz:
GausSetExpander: A Simple Approach for Entity Set Expansion. CoRR abs/2202.13649 (2022) - [i35]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Quantity vs Quality: Investigating the Trade-Off between Sample Size and Label Reliability. CoRR abs/2204.09462 (2022) - [i34]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Supervised and Reinforcement Learning from Observations in Reconnaissance Blind Chess. CoRR abs/2208.02029 (2022) - 2021
- [j44]Tomás Kliegr, Stepán Bahník, Johannes Fürnkranz:
A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artif. Intell. 295: 103458 (2021) - [j43]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
A Unifying Framework and Comparative Evaluation of Statistical and Machine Learning Approaches to Non-Specific Syndromic Surveillance. Comput. 10(3): 32 (2021) - [j42]Aïssatou Diallo, Johannes Fürnkranz:
Learning Ordinal Embedding from Sets. Entropy 23(8): 964 (2021) - [j41]Michael Rapp, Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Correlation-Based Discovery of Disease Patterns for Syndromic Surveillance. Frontiers Big Data 4: 784159 (2021) - [j40]Florian Beck, Johannes Fürnkranz:
An Empirical Investigation Into Deep and Shallow Rule Learning. Frontiers Artif. Intell. 4: 689398 (2021) - [c124]Moritz Kulessa, Bennet Wittelsbach, Eneldo Loza Mencía, Johannes Fürnkranz:
Sum-Product Networks for Early Outbreak Detection of Emerging Diseases. AIME 2021: 61-71 - [c123]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Predicting Human Card Selection in Magic: The Gathering with Contextual Preference Ranking. CoG 2021: 1-8 - [c122]Jessica Fritz, Johannes Fürnkranz:
Some Chess-Specific Improvements for Perturbation-Based Saliency Maps. CoG 2021: 1-8 - [c121]Aïssatou Diallo, Johannes Fürnkranz:
Elliptical Ordinal Embedding. DS 2021: 323-333 - [c120]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Revisiting Non-specific Syndromic Surveillance. IDA 2021: 128-140 - [c119]Florian Beck, Johannes Fürnkranz:
Beyond DNF: First Steps towards Deep Rule Learning. ITAT 2021: 61-68 - [c118]Ryan W. Gardner, Gino Perrotta, Anvay Shah, Shivaram Kalyanakrishnan, Kevin A. Wang, Gregory Clark, Timo Bertram, Johannes Fürnkranz, Martin Müller, Brady P. Garrison, Prithviraj Dasgupta, Saeid Rezaei:
The Machine Reconnaissance Blind Chess Tournament of NeurIPS 2022. NeurIPS (Competition and Demos) 2021: 119-132 - [c117]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier:
Gradient-Based Label Binning in Multi-label Classification. ECML/PKDD (3) 2021: 462-477 - [c116]Florian Beck, Johannes Fürnkranz, Phuong Huynh Van Quoc:
Structuring Rule Sets Using Binary Decision Diagrams. RuleML+RR 2021: 48-61 - [i33]Tobias Joppen, Johannes Fürnkranz:
Ordinal Monte Carlo Tree Search. CoRR abs/2101.10670 (2021) - [i32]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Revisiting Non-Specific Syndromic Surveillance. CoRR abs/2101.12246 (2021) - [i31]Aïssatou Diallo, Johannes Fürnkranz:
Elliptical Ordinal Embedding. CoRR abs/2105.10457 (2021) - [i30]Timo Bertram, Johannes Fürnkranz, Martin Müller:
Predicting Human Card Selection in Magic: The Gathering with Contextual Preference Ranking. CoRR abs/2105.11864 (2021) - [i29]Florian Beck, Johannes Fürnkranz:
An Investigation into Mini-Batch Rule Learning. CoRR abs/2106.10202 (2021) - [i28]Florian Beck, Johannes Fürnkranz:
An Empirical Investigation into Deep and Shallow Rule Learning. CoRR abs/2106.10254 (2021) - [i27]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier:
Gradient-based Label Binning in Multi-label Classification. CoRR abs/2106.11690 (2021) - [i26]Timo Bertram, Johannes Fürnkranz, Martin Müller:
A Comparison of Contextual and Non-Contextual Preference Ranking for Set Addition Problems. CoRR abs/2107.04438 (2021) - [i25]Michael Rapp, Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Correlation-based Discovery of Disease Patterns for Syndromic Surveillance. CoRR abs/2110.09208 (2021) - [i24]Eneldo Loza Mencía, Moritz Kulessa, Simon Bohlender, Johannes Fürnkranz:
Tree-Based Dynamic Classifier Chains. CoRR abs/2112.06672 (2021) - 2020
- [j39]Johannes Czech, Moritz Willig, Alena Beyer, Kristian Kersting, Johannes Fürnkranz:
Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data. Frontiers Artif. Intell. 3: 24 (2020) - [j38]Johannes Fürnkranz, Tomás Kliegr, Heiko Paulheim:
On cognitive preferences and the plausibility of rule-based models. Mach. Learn. 109(4): 853-898 (2020) - [c115]Vu-Linh Nguyen, Eyke Hüllermeier, Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On Aggregation in Ensembles of Multilabel Classifiers. DS 2020: 533-547 - [c114]Aïssatou Diallo, Markus Zopf, Johannes Fürnkranz:
Permutation Learning via Lehmer Codes. ECAI 2020: 1095-1102 - [c113]Eyke Hüllermeier, Johannes Fürnkranz, Eneldo Loza Mencía:
Conformal Rule-Based Multi-label Classification. KI 2020: 290-296 - [c112]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Vu-Linh Nguyen, Eyke Hüllermeier:
Learning Gradient Boosted Multi-label Classification Rules. ECML/PKDD (3) 2020: 124-140 - [c111]Eyke Hüllermeier, Johannes Fürnkranz, Eneldo Loza Mencía, Vu-Linh Nguyen, Michael Rapp:
Rule-Based Multi-label Classification: Challenges and Opportunities. RuleML+RR 2020: 3-19 - [p6]Christian Bauckhage, Johannes Fürnkranz, Gerhard Paaß:
Vertrauenswürdiges, transparentes und robustesMaschinelles Lernen. Handbuch der Künstlichen Intelligenz 2020: 571-600 - [i23]Vu-Linh Nguyen, Eyke Hüllermeier, Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On Aggregation in Ensembles of Multilabel Classifiers. CoRR abs/2006.11916 (2020) - [i22]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Vu-Linh Nguyen, Eyke Hüllermeier:
Learning Gradient Boosted Multi-label Classification Rules. CoRR abs/2006.13346 (2020) - [i21]Eyke Hüllermeier, Johannes Fürnkranz, Eneldo Loza Mencía:
Conformal Rule-Based Multi-label Classification. CoRR abs/2007.08145 (2020) - [i20]Eyke Hüllermeier, Marcel Wever, Eneldo Loza Mencía, Johannes Fürnkranz, Michael Rapp:
A Flexible Class of Dependence-aware Multi-Label Loss Functions. CoRR abs/2011.00792 (2020) - [i19]Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, Michael Rapp:
Learning Structured Declarative Rule Sets - A Challenge for Deep Discrete Learning. CoRR abs/2012.04377 (2020)
2010 – 2019
- 2019
- [j37]Julian Schwehr, Stefan Luthardt, Hien Q. Dang, Maren Henzel, Hermann Winner, Jürgen Adamy, Johannes Fürnkranz, Volker Willert, Benedikt Lattke, Maximilian Höpfl, Christoph Wannemacher:
The PRORETA 4 City Assistant System. Autom. 67(9): 783-798 (2019) - [c110]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Improving the Fusion of Outbreak Detection Methods with Supervised Learning. CIBB 2019: 55-66 - [c109]Tobias Joppen, Tilman Strübig, Johannes Fürnkranz:
Ordinal Bucketing for Game Trees using Dynamic Quantile Approximation. CoG 2019: 1-8 - [c108]Aïssatou Diallo, Markus Zopf, Johannes Fürnkranz:
Learning Analogy-Preserving Sentence Embeddings for Answer Selection. CoNLL 2019: 910-919 - [c107]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On the Trade-Off Between Consistency and Coverage in Multi-label Rule Learning Heuristics. DS 2019: 96-111 - [c106]Lukas Fleckenstein, Sebastian Kauschke, Johannes Fürnkranz:
Beta Distribution Drift Detection for Adaptive Classifiers. ESANN 2019 - [c105]Jinseok Nam, Young-Bum Kim, Eneldo Loza Mencía, Sunghyun Park, Ruhi Sarikaya, Johannes Fürnkranz:
Learning Context-dependent Label Permutations for Multi-label Classification. ICML 2019: 4733-4742 - [c104]Sebastian Kauschke, Lukas Fleckenstein, Johannes Fürnkranz:
Mending is Better than Ending: Adapting Immutable Classifiers to Nonstationary Environments using Ensembles of Patches. IJCNN 2019: 1-8 - [c103]Sebastian Kauschke, David Hermann Lehmann, Johannes Fürnkranz:
Patching Deep Neural Networks for Nonstationary Environments. IJCNN 2019: 1-8 - [c102]Hien Q. Dang, Johannes Fürnkranz:
Driver Information Embedding with Siamese LSTM networks. IV 2019: 935-940 - [c101]Maryam Tavakol, Tobias Joppen, Ulf Brefeld, Johannes Fürnkranz:
Personalized Transaction Kernels for Recommendation Using MCTS. KI 2019: 338-352 - [c100]Aïssatou Diallo, Markus Zopf, Johannes Fürnkranz:
Improving Answer Selection with Analogy-Preserving Sentence Embeddings. LWDA 2019: 84-88 - [c99]Alexander Zap, Tobias Joppen, Johannes Fürnkranz:
Deep Ordinal Reinforcement Learning. ECML/PKDD (3) 2019: 3-18 - [i18]Tobias Joppen, Johannes Fürnkranz:
Ordinal Monte Carlo Tree Search. CoRR abs/1901.04274 (2019) - [i17]Alexander Zap, Tobias Joppen, Johannes Fürnkranz:
Deep Ordinal Reinforcement Learning. CoRR abs/1905.02005 (2019) - [i16]Tobias Joppen, Tilman Strübig, Johannes Fürnkranz:
Ordinal Bucketing for Game Trees using Dynamic Quantile Approximation. CoRR abs/1905.13449 (2019) - [i15]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Improving Outbreak Detection with Stacking of Statistical Surveillance Methods. CoRR abs/1907.07464 (2019) - [i14]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On the Trade-off Between Consistency and Coverage in Multi-label Rule Learning Heuristics. CoRR abs/1908.03032 (2019) - [i13]Johannes Czech, Moritz Willig, Alena Beyer, Kristian Kersting, Johannes Fürnkranz:
Learning to play the Chess Variant Crazyhouse above World Champion Level with Deep Neural Networks and Human Data. CoRR abs/1908.06660 (2019) - [i12]Aïssatou Diallo, Markus Zopf, Johannes Fürnkranz:
Learning Analogy-Preserving Sentence Embeddings for Answer Selection. CoRR abs/1910.05315 (2019) - [i11]Tomás Kliegr, Stepán Bahník, Johannes Fürnkranz:
Advances in Machine Learning for the Behavioral Sciences. CoRR abs/1911.03249 (2019) - [i10]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
Simplifying Random Forests: On the Trade-off between Interpretability and Accuracy. CoRR abs/1911.04393 (2019) - 2018
- [j36]Tobias Joppen, Miriam Ulrike Moneke, Nils Schröder, Christian Wirth, Johannes Fürnkranz:
Informed Hybrid Game Tree Search for General Video Game Playing. IEEE Trans. Games 10(1): 78-90 (2018) - [c98]Sebastian Kauschke, Johannes Fürnkranz:
Batchwise Patching of Classifiers. AAAI 2018: 3374-3381 - [c97]Sebastian Kauschke, Max Mühlhäuser, Johannes Fürnkranz:
Leveraging Reproduction-Error Representations for Multi-Instance Classification. DS 2018: 83-95 - [c96]Sebastian Kauschke, Max Mühlhäuser, Johannes Fürnkranz:
Towards Semi-Supervised Classification of Event Streams via Denoising Autoencoders. ICMLA 2018: 131-136 - [c95]Johannes Fürnkranz, Tomás Kliegr:
The Need for Interpretability Biases. IDA 2018: 15-27 - [c94]Hien Q. Dang, Johannes Fürnkranz:
Using Past Maneuver Executions for Personalization of a Driver Model. ITSC 2018: 742-748 - [c93]Tobias Joppen, Christian Wirth, Johannes Fürnkranz:
Preference-Based Monte Carlo Tree Search. KI 2018: 327-340 - [c92]Hien Q. Dang, Johannes Fürnkranz:
Exploiting Maneuver Dependency for Personalization of a Driver Model. LWDA 2018: 93-97 - [c91]Markus Zopf, Eneldo Loza Mencía, Johannes Fürnkranz:
Which Scores to Predict in Sentence Regression for Text Summarization? NAACL-HLT 2018: 1782-1791 - [c90]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules. PAKDD (1) 2018: 29-42 - [c89]Markus Zopf, Teresa Botschen, Tobias Falke, Benjamin Heinzerling, Ana Marasovic, Todor Mihaylov, Avinesh P. V. S., Eneldo Loza Mencía, Johannes Fürnkranz, Anette Frank:
What's Important in a Text? An Extensive Evaluation of Linguistic Annotations for Summarization. SNAMS 2018: 272-277 - [i9]Johannes Fürnkranz, Tomás Kliegr, Heiko Paulheim:
On Cognitive Preferences and the Interpretability of Rule-based Models. CoRR abs/1803.01316 (2018) - [i8]Tomás Kliegr, Stepán Bahník, Johannes Fürnkranz:
A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. CoRR abs/1804.02969 (2018) - [i7]Tobias Joppen, Christian Wirth, Johannes Fürnkranz:
Preference-Based Monte Carlo Tree Search. CoRR abs/1807.06286 (2018) - [i6]Lukas Fleckenstein, Sebastian Kauschke, Johannes Fürnkranz:
Beta Distribution Drift Detection for Adaptive Classifiers. CoRR abs/1811.10900 (2018) - [i5]Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier, Michael Rapp:
Learning Interpretable Rules for Multi-label Classification. CoRR abs/1812.00050 (2018) - [i4]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules. CoRR abs/1812.06833 (2018) - 2017
- [j35]Anita Valmarska, Nada Lavrac, Johannes Fürnkranz, Marko Robnik-Sikonja:
Refinement and selection heuristics in subgroup discovery and classification rule learning. Expert Syst. Appl. 81: 147-162 (2017) - [j34]Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz:
A Survey of Preference-Based Reinforcement Learning Methods. J. Mach. Learn. Res. 18: 136:1-136:46 (2017) - [c88]Iryna Gurevych, Christian M. Meyer, Carsten Binnig, Johannes Fürnkranz, Kristian Kersting, Stefan Roth, Edwin Simpson:
Interactive Data Analytics for the Humanities. CICLing (1) 2017: 527-549 - [c87]Andrei Tolstikov, Frederik Janssen, Johannes Fürnkranz:
Evaluation of Different Heuristics for Accommodating Asymmetric Loss Functions in Regression. DS 2017: 67-81 - [c86]Camila González, Eneldo Loza Mencía, Johannes Fürnkranz:
Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction. DS 2017: 127-143 - [c85]Hien Q. Dang, Johannes Fürnkranz, Alexander Biedermann, Maximilian Höpfl:
Time-to-lane-change prediction with deep learning. ITSC 2017: 1-7 - [c84]Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J. Kim, Johannes Fürnkranz:
Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification. NIPS 2017: 5413-5423 - [c83]Mohammed Arif Khan, Asif Ekbal, Eneldo Loza Mencía, Johannes Fürnkranz:
Multi-objective Optimisation-Based Feature Selection for Multi-label Classification. NLDB 2017: 38-41 - [e7]Gabriele Kern-Isberner, Johannes Fürnkranz, Matthias Thimm:
KI 2017: Advances in Artificial Intelligence - 40th Annual German Conference on AI, Dortmund, Germany, September 25-29, 2017, Proceedings. Lecture Notes in Computer Science 10505, Springer 2017, ISBN 978-3-319-67189-5 [contents] - [r21]Johannes Fürnkranz:
Class Binarization. Encyclopedia of Machine Learning and Data Mining 2017: 203-204 - [r20]Johannes Fürnkranz:
Classification Rule. Encyclopedia of Machine Learning and Data Mining 2017: 209 - [r19]Johannes Fürnkranz:
Covering Algorithm. Encyclopedia of Machine Learning and Data Mining 2017: 293-294 - [r18]Johannes Fürnkranz:
Decision List. Encyclopedia of Machine Learning and Data Mining 2017: 328 - [r17]Johannes Fürnkranz:
Decision Lists and Decision Trees. Encyclopedia of Machine Learning and Data Mining 2017: 328-329 - [r16]Johannes Fürnkranz:
Decision Stump. Encyclopedia of Machine Learning and Data Mining 2017: 330 - [r15]Johannes Fürnkranz:
Decision Tree. Encyclopedia of Machine Learning and Data Mining 2017: 330-335 - [r14]Johannes Fürnkranz:
Divide-and-Conquer Learning. Encyclopedia of Machine Learning and Data Mining 2017: 372 - [r13]Johannes Fürnkranz:
Machine Learning and Game Playing. Encyclopedia of Machine Learning and Data Mining 2017: 783-788 - [r12]Johannes Fürnkranz, Eyke Hüllermeier:
Preference Learning. Encyclopedia of Machine Learning and Data Mining 2017: 1000-1005 - [r11]Johannes Fürnkranz:
Pruning. Encyclopedia of Machine Learning and Data Mining 2017: 1031-1032 - [r10]Johannes Fürnkranz, Eyke Hüllermeier:
Rank Correlation. Encyclopedia of Machine Learning and Data Mining 2017: 1055 - [r9]Johannes Fürnkranz:
Rule Learning. Encyclopedia of Machine Learning and Data Mining 2017: 1117-1121 - [r8]Johannes Fürnkranz:
Rule Set. Encyclopedia of Machine Learning and Data Mining 2017: 1121 - 2016
- [j33]Johannes Fürnkranz, Eyke Hüllermeier:
Special Issue on Discovery Science. Inf. Sci. 329: 849-850 (2016) - [c82]Jinseok Nam, Eneldo Loza Mencía, Johannes Fürnkranz:
All-in Text: Learning Document, Label, and Word Representations Jointly. AAAI 2016: 1948-1954 - [c81]Christian Wirth, Johannes Fürnkranz, Gerhard Neumann:
Model-Free Preference-Based Reinforcement Learning. AAAI 2016: 2222-2228 - [c80]Markus Zopf, Eneldo Loza Mencía, Johannes Fürnkranz:
Sequential Clustering and Contextual Importance Measures for Incremental Update Summarization. COLING 2016: 1071-1082 - [c79]Fabian Hirschmann, Jinseok Nam, Johannes Fürnkranz:
What Makes Word-level Neural Machine Translation Hard: A Case Study on English-German Translation. COLING 2016: 3199-3208 - [c78]Markus Zopf, Eneldo Loza Mencía, Johannes Fürnkranz:
Beyond Centrality and Structural Features: Learning Information Importance for Text Summarization. CoNLL 2016: 84-94 - [c77]Sebastian Kauschke, Johannes Fürnkranz, Frederik Janssen:
Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype. DS 2016: 151-166 - [c76]Julius Stecher, Frederik Janssen, Johannes Fürnkranz:
Shorter Rules Are Better, Aren't They? DS 2016: 279-294 - [c75]Prateek Veeranna Sappadla, Jinseok Nam, Eneldo Loza Mencía, Johannes Fürnkranz:
Using semantic similarity for multi-label zero-shot classification of text documents. ESANN 2016 - 2015
- [j32]Johannes Fürnkranz:
Editorial. Data Min. Knowl. Discov. 29(1): 1-2 (2015) - [j31]Christian Wirth, Johannes Fürnkranz:
On Learning From Game Annotations. IEEE Trans. Comput. Intell. AI Games 7(3): 304-316 (2015) - [c74]Axel Schulz, Petar Ristoski, Johannes Fürnkranz, Frederik Janssen:
Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts. MUD@ICML 2015: 44-52 - [c73]Axel Schulz, Frederik Janssen, Petar Ristoski, Johannes Fürnkranz:
Event-Based Clustering for Reducing Labeling Costs of Event-related Microposts. ICWSM 2015: 686-689 - [c72]Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J. Kim, Johannes Fürnkranz:
Predicting Unseen Labels Using Label Hierarchies in Large-Scale Multi-label Learning. ECML/PKDD (1) 2015: 102-118 - [c71]Johannes Fürnkranz, Tomás Kliegr:
A Brief Overview of Rule Learning. RuleML 2015: 54-69 - [c70]Jinseok Nam, Johannes Fürnkranz:
On the Importance of a Hierarchy for Learning Continuous Vector Representations of a Label Space. ICLR (Workshop) 2015 - 2014
- [j30]Sang-Hyeun Park, Johannes Fürnkranz:
Efficient implementation of class-based decomposition schemes for Naïve Bayes. Mach. Learn. 96(3): 295-309 (2014) - [c69]Christian Brinker, Eneldo Loza Mencía, Johannes Fürnkranz:
Graded Multilabel Classification by Pairwise Comparisons. ICDM 2014: 731-736 - [c68]Jinseok Nam, Christian Kirschner, Zheng Ma, Nicolai Erbs, Susanne Neumann, Daniela Oelke, Steffen Remus, Chris Biemann, Judith Eckle-Kohler, Johannes Fürnkranz, Iryna Gurevych, Marc Rittberger, Karsten Weihe:
Knowledge Discovery in Scientific Literature. KONVENS 2014: 66-76 - [c67]Christian Wirth, Johannes Fürnkranz:
Preference Learning from Annotated Game Databases. LWA 2014: 57-68 - [c66]Julius Stecher, Frederik Janssen, Johannes Fürnkranz:
Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning. ECML/PKDD (3) 2014: 114-129 - [c65]Jinseok Nam, Jungi Kim, Eneldo Loza Mencía, Iryna Gurevych, Johannes Fürnkranz:
Large-Scale Multi-label Text Classification - Revisiting Neural Networks. ECML/PKDD (2) 2014: 437-452 - [i3]Johannes Fürnkranz, Eyke Hüllermeier, Cynthia Rudin, Roman Slowinski, Scott Sanner:
Preference Learning (Dagstuhl Seminar 14101). Dagstuhl Reports 4(3): 1-27 (2014) - 2013
- [j29]Eyke Hüllermeier, Johannes Fürnkranz:
Editorial: Preference learning and ranking. Mach. Learn. 93(2-3): 185-189 (2013) - [c64]Christian Wirth, Johannes Fürnkranz:
EPMC: Every Visit Preference Monte Carlo for Reinforcement Learning. ACML 2013: 483-497 - [c63]Christian Wirth, Johannes Fürnkranz:
A Policy Iteration Algorithm for Learning from Preference-Based Feedback. IDA 2013: 427-437 - [e6]Johannes Fürnkranz, Eyke Hüllermeier, Tomoyuki Higuchi:
Discovery Science - 16th International Conference, DS 2013, Singapore, October 6-9, 2013. Proceedings. Lecture Notes in Computer Science 8140, Springer 2013, ISBN 978-3-642-40896-0 [contents] - [i2]Jinseok Nam, Jungi Kim, Iryna Gurevych, Johannes Fürnkranz:
Large-scale Multi-label Text Classification - Revisiting Neural Networks. CoRR abs/1312.5419 (2013) - 2012
- [b1]Johannes Fürnkranz, Dragan Gamberger, Nada Lavrac:
Foundations of Rule Learning. Cognitive Technologies, Springer 2012, ISBN 978-3-540-75196-0, pp. 1-298 - [j28]Sang-Hyeun Park, Johannes Fürnkranz:
Efficient prediction algorithms for binary decomposition techniques. Data Min. Knowl. Discov. 24(1): 40-77 (2012) - [j27]Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, Sang-Hyeun Park:
Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Mach. Learn. 89(1-2): 123-156 (2012) - [c62]Johannes Fürnkranz, Sang-Hyeun Park:
Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction. Discovery Science 2012: 254-267 - [c61]Wouter Duivesteijn, Eneldo Loza Mencía, Johannes Fürnkranz, Arno J. Knobbe:
Multi-label LeGo - Enhancing Multi-label Classifiers with Local Patterns. IDA 2012: 114-125 - [c60]Heiko Paulheim, Johannes Fürnkranz:
Unsupervised generation of data mining features from linked open data. WIMS 2012: 31:1-31:12 - 2011
- [j26]Lars Wohlrab, Johannes Fürnkranz:
A review and comparison of strategies for handling missing values in separate-and-conquer rule learning. J. Intell. Inf. Syst. 36(1): 73-98 (2011) - [c59]Eyke Hüllermeier, Johannes Fürnkranz:
Learning from Label Preferences. ALT 2011: 38 - [c58]Eyke Hüllermeier, Johannes Fürnkranz:
Learning from Label Preferences. Discovery Science 2011: 2-17 - [c57]Jan-Nikolas Sulzmann, Johannes Fürnkranz:
Rule Stacking: An Approach for Compressing an Ensemble of Rule Sets into a Single Classifier. Discovery Science 2011: 323-334 - [c56]Frederik Janssen, Johannes Fürnkranz:
Heuristic Rule-Based Regression via Dynamic Reduction to Classification. IJCAI 2011: 1330-1335 - [c55]Frederik Janssen, Johannes Fürnkranz:
Heuristic Rule-Based Regression via Dynamic Reduction to Classification. LWA 2011: 48-53 - [c54]Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, Sang-Hyeun Park:
Preference-Based Policy Iteration: Leveraging Preference Learning for Reinforcement Learning. ECML/PKDD (1) 2011: 312-327 - 2010
- [j25]Marco Ghiglieri, Johannes Fürnkranz:
Learning to Recognize Missing E-Mail Attachments. Appl. Artif. Intell. 24(5): 443-462 (2010) - [j24]Johannes Fürnkranz, Arno J. Knobbe:
Guest Editorial: Global modeling using local patterns. Data Min. Knowl. Discov. 21(1): 1-8 (2010) - [j23]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz:
Efficient voting prediction for pairwise multilabel classification. Neurocomputing 73(7-9): 1164-1176 (2010) - [j22]Eyke Hüllermeier, Johannes Fürnkranz:
On predictive accuracy and risk minimization in pairwise label ranking. J. Comput. Syst. Sci. 76(1): 49-62 (2010) - [j21]Frederik Janssen, Johannes Fürnkranz:
On the quest for optimal rule learning heuristics. Mach. Learn. 78(3): 343-379 (2010) - [j20]Johannes Fürnkranz, Jan Frederik Sima:
On exploiting hierarchical label structure with pairwise classifiers. SIGKDD Explor. 12(2): 21-25 (2010) - [c53]Sang-Hyeun Park, Lorenz Weizsäcker, Johannes Fürnkranz:
Exploiting Code Redundancies in ECOC. Discovery Science 2010: 266-280 - [c52]Eneldo Loza Mencía, Johannes Fürnkranz:
Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. Semantic Processing of Legal Texts 2010: 192-215 - [c51]Frederik Janssen, Johannes Fürnkranz:
Separate-and-conquer Regression. LWA 2010: 81-88 - [c50]Jan-Nikolas Sulzmann, Johannes Fürnkranz:
Probability Estimation and Aggregation for Rule Learning. LWA 2010: 143-150 - [p5]Johannes Fürnkranz, Eyke Hüllermeier:
Preference Learning: An Introduction. Preference Learning 2010: 1-17 - [p4]Johannes Fürnkranz, Eyke Hüllermeier:
Preference Learning and Ranking by Pairwise Comparison. Preference Learning 2010: 65-82 - [p3]Johannes Fürnkranz:
Web Mining. Data Mining and Knowledge Discovery Handbook 2010: 913-929 - [p2]Nada Lavrac, Johannes Fürnkranz, Dragan Gamberger:
Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms. Advances in Machine Learning I 2010: 121-146 - [e5]Johannes Fürnkranz, Eyke Hüllermeier:
Preference Learning. Springer 2010, ISBN 978-3-642-14124-9 [contents] - [e4]Johannes Fürnkranz, Thorsten Joachims:
Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. Omnipress 2010 [contents] - [r7]Johannes Fürnkranz:
Decision List. Encyclopedia of Machine Learning 2010: 261 - [r6]Johannes Fürnkranz:
Decision Lists and Decision Trees. Encyclopedia of Machine Learning 2010: 261-262 - [r5]Johannes Fürnkranz:
Decision Tree. Encyclopedia of Machine Learning 2010: 263-267 - [r4]Johannes Fürnkranz:
Machine Learning and Game Playing. Encyclopedia of Machine Learning 2010: 633-637 - [r3]Johannes Fürnkranz, Eyke Hüllermeier:
Preference Learning. Encyclopedia of Machine Learning 2010: 789-795 - [r2]Johannes Fürnkranz:
Pruning. Encyclopedia of Machine Learning 2010: 817 - [r1]Johannes Fürnkranz:
Rule Learning. Encyclopedia of Machine Learning 2010: 875-879
2000 – 2009
- 2009
- [c49]Jan-Nikolas Sulzmann, Johannes Fürnkranz:
An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules. Discovery Science 2009: 317-331 - [c48]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz:
Efficient voting prediction for pairwise multilabel classification. ESANN 2009 - [c47]Immanuel Schweizer, Kamill Panitzek, Sang-Hyeun Park, Johannes Fürnkranz:
An Exploitative Monte-Carlo Poker Agent. KI 2009: 65-72 - [c46]Immanuel Schweizer, Kamill Panitzek, Sang-Hyeun Park, Johannes Fürnkranz:
An Exploitative Monte-Carlo Poker Agent. LWA 2009: KDML:100-104 - [c45]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz:
Efficient Voting Prediction for Pairwise Multilabel Classification. LWA 2009: KDML:72-75 - [c44]Lorenz Weizsäcker, Johannes Fürnkranz:
On Table Extraction from Text Sources with Markups. LWA 2009: WIR:1-8 - [c43]Sang-Hyeun Park, Johannes Fürnkranz:
Efficient Decoding of Ternary Error-Correcting Output Codes for Multiclass Classification. ECML/PKDD (2) 2009: 189-204 - [c42]Johannes Fürnkranz, Eyke Hüllermeier, Stijn Vanderlooy:
Binary Decomposition Methods for Multipartite Ranking. ECML/PKDD (1) 2009: 359-374 - [c41]Frederik Janssen, Johannes Fürnkranz:
A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning. SDM 2009: 329-340 - 2008
- [j19]Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, Klaus Brinker:
Label ranking by learning pairwise preferences. Artif. Intell. 172(16-17): 1897-1916 (2008) - [j18]Sacha Droste, Johannes Fürnkranz:
Learning the Piece Values for Three Chess Variants. J. Int. Comput. Games Assoc. 31(4): 209-233 (2008) - [j17]Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, Klaus Brinker:
Multilabel classification via calibrated label ranking. Mach. Learn. 73(2): 133-153 (2008) - [c40]Frederik Janssen, Johannes Fürnkranz:
An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics. Discovery Science 2008: 40-51 - [c39]Eneldo Loza Mencía, Johannes Fürnkranz:
Pairwise learning of multilabel classifications with perceptrons. IJCNN 2008: 2899-2906 - [c38]Frederik Janssen, Johannes Fürnkranz:
A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning. LWA 2008: 42-49 - [c37]Jan-Nikolas Sulzmann, Johannes Fürnkranz:
A Comparison of Techniques for Selecting and Combining Class Association Rules. LWA 2008: 87-93 - [c36]Eneldo Loza Mencía, Johannes Fürnkranz:
Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain. ECML/PKDD (2) 2008: 50-65 - [c35]Dragan Gamberger, Nada Lavrac, Johannes Fürnkranz:
Handling Unknown and Imprecise Attribute Values in Propositional Rule Learning: A Feature-Based Approach. PRICAI 2008: 636-645 - 2007
- [c34]Jan-Nikolas Sulzmann, Johannes Fürnkranz, Eyke Hüllermeier:
On Pairwise Naive Bayes Classifiers. ECML 2007: 371-381 - [c33]Eyke Hüllermeier, Johannes Fürnkranz:
On Minimizing the Position Error in Label Ranking. ECML 2007: 583-590 - [c32]Sang-Hyeun Park, Johannes Fürnkranz:
Efficient Pairwise Classification. ECML 2007: 658-665 - [c31]Frederik Janssen, Johannes Fürnkranz:
On Meta-Learning Rule Learning Heuristics. ICDM 2007: 529-534 - [c30]Eneldo Loza Mencía, Johannes Fürnkranz:
An Evaluation of Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. LWA 2007: 126-132 - [c29]Frederik Janssen, Johannes Fürnkranz:
Meta-Learning Rule Learning Heuristics. LWA 2007: 167-174 - 2006
- [j16]Michael H. Bowling, Johannes Fürnkranz, Thore Graepel, Ron Musick:
Machine learning and games. Mach. Learn. 63(3): 211-215 (2006) - [c28]Klaus Brinker, Johannes Fürnkranz, Eyke Hüllermeier:
A Unified Model for Multilabel Classification and Ranking. ECAI 2006: 489-493 - [c27]Frederik Janssen, Johannes Fürnkranz:
On Trading Off Consistency and Coverage in Inductive Rule Learning. LWA 2006: 306-313 - [e3]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou:
Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4212, Springer 2006, ISBN 3-540-45375-X [contents] - [e2]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou:
Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4213, Springer 2006, ISBN 3-540-45374-1 [contents] - 2005
- [j15]Johannes Fürnkranz, Eyke Hüllermeier:
Preference Learning. Künstliche Intell. 19(1): 60- (2005) - [j14]Johannes Fürnkranz, Peter A. Flach:
ROC 'n' Rule Learning - Towards a Better Understanding of Covering Algorithms. Mach. Learn. 58(1): 39-77 (2005) - [c26]Hervé Utard, Johannes Fürnkranz:
Link-Local Features for Hypertext Classification. EWMF/KDO 2005: 51-64 - [c25]Eyke Hüllermeier, Johannes Fürnkranz:
Learning Label Preferences: Ranking Error Versus Position Error. IDA 2005: 180-191 - [c24]Eyke Hüllermeier, Johannes Fürnkranz, Jürgen Beringer:
On Position Error and Label Ranking through Iterated Choice. LWA 2005: 158-163 - [p1]Johannes Fürnkranz:
Web Mining. The Data Mining and Knowledge Discovery Handbook 2005: 899-920 - [e1]Mathias Bauer, Boris Brandherm, Johannes Fürnkranz, Gunter Grieser, Andreas Hotho, Andreas Jedlitschka, Alexander Kröner:
Lernen, Wissensentdeckung und Adaptivität (LWA) 2005, GI Workshops, Saarbrücken, October 10th-12th, 2005. DFKI 2005 [contents] - 2004
- [c23]Johannes Fürnkranz:
From Local to Global Patterns: Evaluation Issues in Rule Learning Algorithms. Local Pattern Detection 2004: 20-38 - [c22]Johannes Fürnkranz, Peter A. Flach:
An Analysis of Stopping and Filtering Criteria for Rule Learning. ECML 2004: 123-133 - [c21]Eyke Hüllermeier, Johannes Fürnkranz:
Ranking by pairwise comparison a note on risk minimization. FUZZ-IEEE 2004: 97-102 - [c20]Johannes Fürnkranz:
Modeling Rule Precision. LWA 2004: 147-154 - 2003
- [j13]Johannes Fürnkranz:
Round robin ensembles. Intell. Data Anal. 7(5): 385-403 (2003) - [c19]Johannes Fürnkranz, Eyke Hüllermeier:
Pairwise Preference Learning and Ranking. ECML 2003: 145-156 - [c18]Johannes Fürnkranz, Peter A. Flach:
An Analysis of Rule Evaluation Metrics. ICML 2003: 202-209 - [c17]Petr Savický, Johannes Fürnkranz:
Combining Pairwise Classifiers with Stacking. IDA 2003: 219-229 - 2002
- [j12]Johannes Fürnkranz, Christian Holzbaur, Robert Temel:
User Profiling for the MELVIL Knowledge Retrieval System. Appl. Artif. Intell. 16(4): 243-281 (2002) - [j11]Johannes Fürnkranz:
Hyperlink ensembles: a case study in hypertext classification. Inf. Fusion 3(4): 299-312 (2002) - [j10]Johannes Fürnkranz:
Round Robin Classification. J. Mach. Learn. Res. 2: 721-747 (2002) - [c16]Johannes Fürnkranz:
A Pathology of Bottom-Up Hill-Climbing in Inductive Rule Learning. ALT 2002: 263-277 - [c15]Johannes Fürnkranz:
Pairwise Classification as an Ensemble Technique. ECML 2002: 97-110 - 2001
- [c14]Johannes Fürnkranz:
Round Robin Rule Learning. ICML 2001: 146-153 - [c13]Alexander K. Seewald, Johannes Fürnkranz:
An Evaluation of Grading Classifiers. IDA 2001: 115-124 - [c12]Hendrik Blockeel, Johannes Fürnkranz, Alexia Prskawetz, Francesco C. Billari:
Detecting Temporal Change in Event Sequences: An Application to Demographic Data. PKDD 2001: 29-41 - 2000
- [j9]Klaus Kovar, Johannes Fürnkranz, Johann Petrak, Bernhard Pfahringer, Robert Trappl, Gerhard Widmer:
Searching for Patterns in Political Event Sequences: Experiments with the Keds Database. Cybern. Syst. 31(6): 649-668 (2000) - [c11]Johannes Fürnkranz, Bernhard Pfahringer, Hermann Kaindl, Stefan Kramer:
Learning to Use Operational Advice. ECAI 2000: 291-295
1990 – 1999
- 1999
- [j8]Johannes Fürnkranz:
Separate-and-Conquer Rule Learning. Artif. Intell. Rev. 13(1): 3-54 (1999) - [j7]Johannes Fürnkranz, Moroslaw Kubat:
Report on the Machine-Learning in Game-Playing Workshop. J. Int. Comput. Games Assoc. 22(3): 178-179 (1999) - [c10]Johannes Fürnkranz:
Exploiting Structural Information for Text Classification on the WWW. IDA 1999: 487-498 - 1998
- [j6]Johannes Fürnkranz, Bernhard Pfahringer:
Guest Editorial: First-Order Knowledge Discovery in Databases. Appl. Artif. Intell. 12(5): 345-361 (1998) - [j5]Franz-Günter Winkler, Johannes Fürnkranz:
A Hypothesis on the Divergence of AI Research. J. Int. Comput. Games Assoc. 21(1): 3-13 (1998) - [j4]Johannes Fürnkranz:
Integrative Windowing. J. Artif. Intell. Res. 8: 129-164 (1998) - [i1]Johannes Fürnkranz:
Integrative Windowing. CoRR cs.AI/9805101 (1998) - 1997
- [j3]Johannes Fürnkranz, Johann Petrak, Robert Trappl:
Knowledge Discovery in International Conflict Databases. Appl. Artif. Intell. 11(2): 91-118 (1997) - [j2]Johannes Fürnkranz:
Pruning Algorithms for Rule Learning. Mach. Learn. 27(2): 139-172 (1997) - [c9]Franz-Günter Winkler, Johannes Fürnkranz:
On Effort in AI Research: A Description Along Two Dimensions. Deep Blue Versus Kasparov: The Significance for Artificial Intelligence 1997: 56-62 - [c8]Johannes Fürnkranz:
More Efficient Windowing. AAAI/IAAI 1997: 509-514 - [c7]Johannes Fürnkranz:
Noise-Tolerant Windowing. IJCAI (2) 1997: 852-859 - 1996
- [j1]Johannes Fürnkranz:
Machine Learning in Computer Chess: The Next Generation. J. Int. Comput. Games Assoc. 19(3): 147-161 (1996) - [c6]Robert Trappl, Johannes Fürnkranz, Johann Petrak:
Digging for Peace: Using Machine Learning Methods for Assessing International Conflict Databases. ECAI 1996: 453-457 - 1995
- [c5]Johannes Fürnkranz:
A Tight Integration of Pruning and Learning (Extended Abstract). ECML 1995: 291-294 - 1994
- [c4]Johannes Fürnkranz:
Top-Down Pruning in Relational Learning. ECAI 1994: 453-457 - [c3]Johannes Fürnkranz:
FOSSIL: A Robust Relational Learner. ECML 1994: 122-137 - [c2]Johannes Fürnkranz, Gerhard Widmer:
Incremental Reduced Error Pruning. ICML 1994: 70-77 - [c1]Johannes Fürnkranz:
A Comparison of Pruning Methods for Relational Concept Learning. KDD Workshop 1994: 371-382
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 21:40 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint