Ayuda
Ir al contenido

Dialnet


Anomaly Prediction in Cybersecurity: A Machine Learning Model from the Perspective of Data Engineering and Fingerprinting

    1. [1] Universidad Internacional Isabel I de Castilla

      Universidad Internacional Isabel I de Castilla

      Burgos, España

    2. [2] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: Proceedings XoveTIC 2024: Impulsando el talento científico / coord. por Manuel Lagos Rodríguez, Tirso Varela Rodeiro, Javier Pereira-Loureiro, Manuel Penedo, 2024, págs. 425-432
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This project utilizes artificial intelligence (AI) and machine learning through the development of a mathematical-predictive model to reliably detect cyber anomalies. Using the BETH dataset and the CRISP-DM methodology, this research has addressed the problem of combining kernel and network traffic data, achieving a 37.27% increase in the detection of malicious activities compared to the initial data. Additionally, an innovative dataset was formulated, in which the complete trace of a new botnet attack pattern was discovered, previously unknown to BETH, involving the entire monitored network in illicit cryptocurrency mining. Finally, several models were successfully built and trained using Random Forest and Decision Trees algorithms, with accuracies of 100% and 99%, respectively.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno