Ayuda
Ir al contenido

Dialnet


Using FastSAM for Creating Custom Automatic Segmentation Models for Medicine and Biology

    1. [1] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    2. [2] Universidad Autónoma de Madrid

      Universidad Autónoma de Madrid

      Madrid, España

    3. [3] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    4. [4] Universidade de Vigo

      Universidade de Vigo

      Vigo, España

    5. [5] Complexo Hospitalario Universitario de A Coruña
  • Localización: Proceedings XoveTIC 2024: Impulsando el talento científico / coord. por Manuel Lagos Rodríguez, Tirso Varela Rodeiro, Javier Pereira-Loureiro, Manuel Penedo, 2024, págs. 237-243
  • Idioma: inglés
  • Enlaces
  • Resumen
    • FastSAM, a publicly available image segmentation model designed for general image segmentation, is turned into a highly adaptable and advanced segmentation tool that requires minimal training in two distinct scenarios. In the first case, we examine macroscopic X-ray images of the knee, in the second case, we focus on microscopic images of the zebra fish embryo retina, which have a significantly smaller spatial scale. We determine the minimum number of images needed to maintain state-of-the-art segmentation quality in each case. Finally, we evaluate the impact of image filtering and the unique considerations of segmenting 3D retinal volumes.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno