Laureano Fernando Escudero Bueno, María Araceli Garín Martín, Gloria Pérez Sainz de Rozas, Aitziber Unzueta Inchaurbe
In this paper we study solution methods for solving the dual problem corresponding to the Lagrangian Decomposition of two-stage stochastic mixed 0-1 models. We represent the two-stage stochastic mixed 0-1 problem by a splitting variable representation of the deterministic equivalent model, where 0-1 and continuous variables appear at any stage. Lagrangian Decomposition (LD) is proposed for satisfying both the integrality constraints for the 0-1 variables and the non-anticipativity constraints. We compare the performance of four iterative algorithms based on dual Lagrangian Decomposition schemes: the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm, and the Dynamic Constrained Cutting Plane scheme. We test the tightness of the LD bounds in a testbed of medium- and large-scale stochastic instances.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados