Ayuda
Ir al contenido

Dialnet


On optimization of stochastic max–min-plus-scaling systems—An approximation approach

  • Autores: Samira S. Farahani, Ton- van den Boom, Bart De Schutter
  • Localización: Automatica: A journal of IFAC the International Federation of Automatic Control, ISSN 0005-1098, Vol. 83, 2017, págs. 20-27
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Abstract A large class of discrete-event and hybrid systems can be described by a max–min-plus-scaling (MMPS) model, i.e., a model in which the main operations are maximization, minimization, addition, and scalar multiplication. Accordingly, optimization of MMPS systems appears in different problems defined for discrete-event and hybrid systems. For a stochastic MMPS system, this optimization problem is computationally highly demanding as often numerical integration has to be used to compute the objective function. The aim of this paper is to decrease such computational complexity by applying an approximation method that is based on the moments of a random variable and that can be computed analytically.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno