Ayuda
Ir al contenido

Dialnet


Limit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systems

    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    2. [2] Universidade Estadual Paulista (Brasil)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 13, Nº 1, 2014, págs. 129-148
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers x˙ = y(−1 + 2αx + 2βx2), y˙ = x + α(y2 − x2) + 2βxy2, α ∈ R,β< 0, when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems with two zones of discontinuity separated by a straight line. We obtain that this number is 3 for the perturbed continuous systems and at least 12 for the discontinuous ones using the averaging method of first order.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno