Ayuda
Ir al contenido

Dialnet


Corpus Selection Approaches for Multilingual Parsing from Raw Text to Universal Dependencies

  • Autores: Ryan Hornby, Clark Taylor, Jungyeul Park
  • Localización: Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies : August 3-4, 2017 Vancouver, Canada / coord. por Jan Hajic, 2017, ISBN 978-1-945626-70-8, págs. 198-206
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper describes UALing’s approach to the CoNLL 2017 UD Shared Task using corpus selection techniques to reduce training data size. The methodology is simple: We use similarity measures to select a corpus from available training data (even from multiple corpora for surprise languages) and use the resulting corpus to complete the parsing task. The training and parsing is done with the baseline UDPipe system (Strakaet al., 2016). While our approach reduces the size of training data significantly, it retains performance within 0.5% of the baseline system. Due to the reduction in training data size, our system per- forms faster than the native, complete corpus method. Specifically, our system runs in less than 10 minutes, ranking it among the fastest entries for this task. Our system is available at https://github.

      com/CoNLL-UD-2017/UALING.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno