Ayuda
Ir al contenido

Dialnet


Enhancing Pathological Detection and Monitoring in OCT Volumes with Limited Slices using Convolutional Neural Networks and 3D Visualization Techniques

    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: VI Congreso XoveTIC: impulsando el talento científico / coord. por Javier Pereira-Loureiro, Manuel Penedo; Manuel Lagos Rodríguez (ed. lit.), Álvaro Leitao (ed. lit.), Tirso Varela Rodeiro (ed. lit.), 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Optical Coherence Tomography (OCT) is a non-invasive imaging technique with a crucial role in the monitoring of a wide range of diseases. In order to make a good diagnosis it is essential that clinicians can observe any subtle changes that appear in the multiple ocular structures, so it is imperative that the 3D OCT volumes have good resolution in each axis. Unfortunately, there is a trade-off between image quality and the number of volume slices. In this work, we use a convolutional neural network to generate the intermediate synthetic slices of the OTC volumes and we propose a few variants of a 3D reconstruction algorithm to create visualizations that emphasize the changes present in multiple retinal structures to aid clinicians in the diagnostic process


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno