Los informes oficiales de delitos de odio en los Estados Unidos están subestimados en comparación con la cantidad real de incidentes de este tipo. Además, a pesar de las aproximaciones estadísticas, no hay in-formes oficiales de muchas ciudades estadounidenses sobre incidentes de odio. Aquí, mostramos inicialmente que la extracción de eventos y el aprendizaje multi-instancia, basados en inteligencia artificial (IA), aplica-dos a un conjunto de artículos de noticias locales, pueden predecir ca-sos de delitos de odio. Luego utilizamos el modelo entrenado de IA para detectar incidentes de odio en ciudades para las cuales el FBI carece de estadísticas. Finalmente, entrenamos modelos de IA para predecir homi-cidios y secuestros, comparamos las predicciones con los informes del FBI y establecemos que, de hecho, los incidentes de odio están subestima-dos en comparación con otros tipos de delitos en la prensa local. Es im-portante destacar que esta información no ha sido extraída de este lugar.
Official reports of hate crimes in the United States are underestimated compared to the actual number of such incidents. Additionally, despite statistical approximations, many American cities lack official reports on hate incidents. Here, we initially demonstrate that event extraction and multi-instance learning, based on artificial intelligence (AI), applied to a set of local news articles, can predict hate crime cases. We then use the AI-trained model to detect hate incidents in cities for which the FBI lacks Official reports of hate crimes in the United States are underestimated compared to the actual number of such incidents. Additionally, despite statistical approximations, many American cities lack official reports on hate incidents. Here, we initially demonstrate that event extraction and multi-instance learning, based on artificial intelligence (AI), applied to a set of local news articles, can predict hate crime cases. We then use the AI-trained model to detect hate incidents in cities for which the FBI lacks
© 2001-2025 Fundación Dialnet · Todos los derechos reservados