Darvis Dorvigny Dorvigny, Luis Hernández Santana, Delvis Garcia Garcia
En los últimos años ha crecido el interés por el desarrollo de vehículos autónomos por las posibilidades que brindan para el cumplimiento de misiones en lugares de difícil acceso, en tareas de reconocimiento, estudio de ecosistemas; y en otras ramas importantes como la agricultura. En Cuba, el Grupo de Automática, Robótica y Percepción de la Universidad Central de las Villas, de conjunto con otras instituciones, tiene como objetivo desarrollar autopilotos para vehículos autónomos. En este artículo se presenta una solución de navegación basada en el Filtro Extendido de Kalman. Se fusionan de forma indirecta las mediciones de sensores inerciales de bajo costo con mediciones de GPS para estimar la estimar la posición y velocidad de un vehículo autónomo. Se abordan como valor agregado las ecuaciones fundamentales para la implementación de un filtro complementario para estimar la orientación del vehículo, de importancia notable para la navegación. La simulación se realizó en Matlab, haciendo uso de datos reales de navegación de un vehículo subacuático. Los resultados muestran que la estimación de los parámetros de navegación es aceptable para este tipo de aplicación.
Interest in the development of autonomous vehicles has grown in recent years, due to the possibilities they offer for the accomplishment of missions in places difficult to reach, in reconnaissance tasks, in the study of ecosystems, and in other important branches such as agriculture . In Cuba, the Group of Automatation, Robotics and Perception of the Universidad Central Marta Abreu de las Villas, together with other institutions, it is intended to develop autopilots for autonomous vehicles. This paper presents a navigation solution based on the Kalman Extended Filter. Low-cost inertial sensor measurements are indirectly fused with GPS measurements to estimate the position and speed of an autonomous vehicle. The fundamental equations for the implementation of a complementary filter to estimate the orientation of the vehicle, very important for navigation, are addressed as added value. The simulation was performed with real data of an underwater vehicle, using Matlab. The results show that the estimation of the navigation parameters is feasible for this type of application.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados