alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84use core::marker::PhantomData;
85use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
86use core::ops::{self, Index, IndexMut, Range, RangeBounds};
87use core::ptr::{self, NonNull};
88use core::slice::{self, SliceIndex};
89use core::{fmt, intrinsics, ub_checks};
90
91#[stable(feature = "extract_if", since = "1.87.0")]
92pub use self::extract_if::ExtractIf;
93use crate::alloc::{Allocator, Global};
94use crate::borrow::{Cow, ToOwned};
95use crate::boxed::Box;
96use crate::collections::TryReserveError;
97use crate::raw_vec::RawVec;
98
99mod extract_if;
100
101#[cfg(not(no_global_oom_handling))]
102#[stable(feature = "vec_splice", since = "1.21.0")]
103pub use self::splice::Splice;
104
105#[cfg(not(no_global_oom_handling))]
106mod splice;
107
108#[stable(feature = "drain", since = "1.6.0")]
109pub use self::drain::Drain;
110
111mod drain;
112
113#[cfg(not(no_global_oom_handling))]
114mod cow;
115
116#[cfg(not(no_global_oom_handling))]
117pub(crate) use self::in_place_collect::AsVecIntoIter;
118#[stable(feature = "rust1", since = "1.0.0")]
119pub use self::into_iter::IntoIter;
120
121mod into_iter;
122
123#[cfg(not(no_global_oom_handling))]
124use self::is_zero::IsZero;
125
126#[cfg(not(no_global_oom_handling))]
127mod is_zero;
128
129#[cfg(not(no_global_oom_handling))]
130mod in_place_collect;
131
132mod partial_eq;
133
134#[unstable(feature = "vec_peek_mut", issue = "122742")]
135pub use self::peek_mut::PeekMut;
136
137mod peek_mut;
138
139#[cfg(not(no_global_oom_handling))]
140use self::spec_from_elem::SpecFromElem;
141
142#[cfg(not(no_global_oom_handling))]
143mod spec_from_elem;
144
145#[cfg(not(no_global_oom_handling))]
146use self::set_len_on_drop::SetLenOnDrop;
147
148#[cfg(not(no_global_oom_handling))]
149mod set_len_on_drop;
150
151#[cfg(not(no_global_oom_handling))]
152use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
153
154#[cfg(not(no_global_oom_handling))]
155mod in_place_drop;
156
157#[cfg(not(no_global_oom_handling))]
158use self::spec_from_iter_nested::SpecFromIterNested;
159
160#[cfg(not(no_global_oom_handling))]
161mod spec_from_iter_nested;
162
163#[cfg(not(no_global_oom_handling))]
164use self::spec_from_iter::SpecFromIter;
165
166#[cfg(not(no_global_oom_handling))]
167mod spec_from_iter;
168
169#[cfg(not(no_global_oom_handling))]
170use self::spec_extend::SpecExtend;
171
172#[cfg(not(no_global_oom_handling))]
173mod spec_extend;
174
175/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
176///
177/// # Examples
178///
179/// ```
180/// let mut vec = Vec::new();
181/// vec.push(1);
182/// vec.push(2);
183///
184/// assert_eq!(vec.len(), 2);
185/// assert_eq!(vec[0], 1);
186///
187/// assert_eq!(vec.pop(), Some(2));
188/// assert_eq!(vec.len(), 1);
189///
190/// vec[0] = 7;
191/// assert_eq!(vec[0], 7);
192///
193/// vec.extend([1, 2, 3]);
194///
195/// for x in &vec {
196///     println!("{x}");
197/// }
198/// assert_eq!(vec, [7, 1, 2, 3]);
199/// ```
200///
201/// The [`vec!`] macro is provided for convenient initialization:
202///
203/// ```
204/// let mut vec1 = vec![1, 2, 3];
205/// vec1.push(4);
206/// let vec2 = Vec::from([1, 2, 3, 4]);
207/// assert_eq!(vec1, vec2);
208/// ```
209///
210/// It can also initialize each element of a `Vec<T>` with a given value.
211/// This may be more efficient than performing allocation and initialization
212/// in separate steps, especially when initializing a vector of zeros:
213///
214/// ```
215/// let vec = vec![0; 5];
216/// assert_eq!(vec, [0, 0, 0, 0, 0]);
217///
218/// // The following is equivalent, but potentially slower:
219/// let mut vec = Vec::with_capacity(5);
220/// vec.resize(5, 0);
221/// assert_eq!(vec, [0, 0, 0, 0, 0]);
222/// ```
223///
224/// For more information, see
225/// [Capacity and Reallocation](#capacity-and-reallocation).
226///
227/// Use a `Vec<T>` as an efficient stack:
228///
229/// ```
230/// let mut stack = Vec::new();
231///
232/// stack.push(1);
233/// stack.push(2);
234/// stack.push(3);
235///
236/// while let Some(top) = stack.pop() {
237///     // Prints 3, 2, 1
238///     println!("{top}");
239/// }
240/// ```
241///
242/// # Indexing
243///
244/// The `Vec` type allows access to values by index, because it implements the
245/// [`Index`] trait. An example will be more explicit:
246///
247/// ```
248/// let v = vec![0, 2, 4, 6];
249/// println!("{}", v[1]); // it will display '2'
250/// ```
251///
252/// However be careful: if you try to access an index which isn't in the `Vec`,
253/// your software will panic! You cannot do this:
254///
255/// ```should_panic
256/// let v = vec![0, 2, 4, 6];
257/// println!("{}", v[6]); // it will panic!
258/// ```
259///
260/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
261/// the `Vec`.
262///
263/// # Slicing
264///
265/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
266/// To get a [slice][prim@slice], use [`&`]. Example:
267///
268/// ```
269/// fn read_slice(slice: &[usize]) {
270///     // ...
271/// }
272///
273/// let v = vec![0, 1];
274/// read_slice(&v);
275///
276/// // ... and that's all!
277/// // you can also do it like this:
278/// let u: &[usize] = &v;
279/// // or like this:
280/// let u: &[_] = &v;
281/// ```
282///
283/// In Rust, it's more common to pass slices as arguments rather than vectors
284/// when you just want to provide read access. The same goes for [`String`] and
285/// [`&str`].
286///
287/// # Capacity and reallocation
288///
289/// The capacity of a vector is the amount of space allocated for any future
290/// elements that will be added onto the vector. This is not to be confused with
291/// the *length* of a vector, which specifies the number of actual elements
292/// within the vector. If a vector's length exceeds its capacity, its capacity
293/// will automatically be increased, but its elements will have to be
294/// reallocated.
295///
296/// For example, a vector with capacity 10 and length 0 would be an empty vector
297/// with space for 10 more elements. Pushing 10 or fewer elements onto the
298/// vector will not change its capacity or cause reallocation to occur. However,
299/// if the vector's length is increased to 11, it will have to reallocate, which
300/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
301/// whenever possible to specify how big the vector is expected to get.
302///
303/// # Guarantees
304///
305/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
306/// about its design. This ensures that it's as low-overhead as possible in
307/// the general case, and can be correctly manipulated in primitive ways
308/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
309/// If additional type parameters are added (e.g., to support custom allocators),
310/// overriding their defaults may change the behavior.
311///
312/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
313/// triplet. No more, no less. The order of these fields is completely
314/// unspecified, and you should use the appropriate methods to modify these.
315/// The pointer will never be null, so this type is null-pointer-optimized.
316///
317/// However, the pointer might not actually point to allocated memory. In particular,
318/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
319/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
320/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
321/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
322/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
323/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
324/// details are very subtle --- if you intend to allocate memory using a `Vec`
325/// and use it for something else (either to pass to unsafe code, or to build your
326/// own memory-backed collection), be sure to deallocate this memory by using
327/// `from_raw_parts` to recover the `Vec` and then dropping it.
328///
329/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
330/// (as defined by the allocator Rust is configured to use by default), and its
331/// pointer points to [`len`] initialized, contiguous elements in order (what
332/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
333/// logically uninitialized, contiguous elements.
334///
335/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
336/// visualized as below. The top part is the `Vec` struct, it contains a
337/// pointer to the head of the allocation in the heap, length and capacity.
338/// The bottom part is the allocation on the heap, a contiguous memory block.
339///
340/// ```text
341///             ptr      len  capacity
342///        +--------+--------+--------+
343///        | 0x0123 |      2 |      4 |
344///        +--------+--------+--------+
345///             |
346///             v
347/// Heap   +--------+--------+--------+--------+
348///        |    'a' |    'b' | uninit | uninit |
349///        +--------+--------+--------+--------+
350/// ```
351///
352/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
353/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
354///   layout (including the order of fields).
355///
356/// `Vec` will never perform a "small optimization" where elements are actually
357/// stored on the stack for two reasons:
358///
359/// * It would make it more difficult for unsafe code to correctly manipulate
360///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
361///   only moved, and it would be more difficult to determine if a `Vec` had
362///   actually allocated memory.
363///
364/// * It would penalize the general case, incurring an additional branch
365///   on every access.
366///
367/// `Vec` will never automatically shrink itself, even if completely empty. This
368/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
369/// and then filling it back up to the same [`len`] should incur no calls to
370/// the allocator. If you wish to free up unused memory, use
371/// [`shrink_to_fit`] or [`shrink_to`].
372///
373/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
374/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
375/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
376/// accurate, and can be relied on. It can even be used to manually free the memory
377/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
378/// when not necessary.
379///
380/// `Vec` does not guarantee any particular growth strategy when reallocating
381/// when full, nor when [`reserve`] is called. The current strategy is basic
382/// and it may prove desirable to use a non-constant growth factor. Whatever
383/// strategy is used will of course guarantee *O*(1) amortized [`push`].
384///
385/// It is guaranteed, in order to respect the intentions of the programmer, that
386/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
387/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
388/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
389/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
390///
391/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
392/// and not more than the allocated capacity.
393///
394/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
395/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
396/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
397/// `Vec` exploits this fact as much as reasonable when implementing common conversions
398/// such as [`into_boxed_slice`].
399///
400/// `Vec` will not specifically overwrite any data that is removed from it,
401/// but also won't specifically preserve it. Its uninitialized memory is
402/// scratch space that it may use however it wants. It will generally just do
403/// whatever is most efficient or otherwise easy to implement. Do not rely on
404/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
405/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
406/// first, that might not actually happen because the optimizer does not consider
407/// this a side-effect that must be preserved. There is one case which we will
408/// not break, however: using `unsafe` code to write to the excess capacity,
409/// and then increasing the length to match, is always valid.
410///
411/// Currently, `Vec` does not guarantee the order in which elements are dropped.
412/// The order has changed in the past and may change again.
413///
414/// [`get`]: slice::get
415/// [`get_mut`]: slice::get_mut
416/// [`String`]: crate::string::String
417/// [`&str`]: type@str
418/// [`shrink_to_fit`]: Vec::shrink_to_fit
419/// [`shrink_to`]: Vec::shrink_to
420/// [capacity]: Vec::capacity
421/// [`capacity`]: Vec::capacity
422/// [`Vec::capacity`]: Vec::capacity
423/// [size_of::\<T>]: size_of
424/// [len]: Vec::len
425/// [`len`]: Vec::len
426/// [`push`]: Vec::push
427/// [`insert`]: Vec::insert
428/// [`reserve`]: Vec::reserve
429/// [`Vec::with_capacity(n)`]: Vec::with_capacity
430/// [`MaybeUninit`]: core::mem::MaybeUninit
431/// [owned slice]: Box
432/// [`into_boxed_slice`]: Vec::into_boxed_slice
433#[stable(feature = "rust1", since = "1.0.0")]
434#[rustc_diagnostic_item = "Vec"]
435#[rustc_insignificant_dtor]
436#[doc(alias = "list")]
437#[doc(alias = "vector")]
438pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
439    buf: RawVec<T, A>,
440    len: usize,
441}
442
443////////////////////////////////////////////////////////////////////////////////
444// Inherent methods
445////////////////////////////////////////////////////////////////////////////////
446
447impl<T> Vec<T> {
448    /// Constructs a new, empty `Vec<T>`.
449    ///
450    /// The vector will not allocate until elements are pushed onto it.
451    ///
452    /// # Examples
453    ///
454    /// ```
455    /// # #![allow(unused_mut)]
456    /// let mut vec: Vec<i32> = Vec::new();
457    /// ```
458    #[inline]
459    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
460    #[rustc_diagnostic_item = "vec_new"]
461    #[stable(feature = "rust1", since = "1.0.0")]
462    #[must_use]
463    pub const fn new() -> Self {
464        Vec { buf: RawVec::new(), len: 0 }
465    }
466
467    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
468    ///
469    /// The vector will be able to hold at least `capacity` elements without
470    /// reallocating. This method is allowed to allocate for more elements than
471    /// `capacity`. If `capacity` is zero, the vector will not allocate.
472    ///
473    /// It is important to note that although the returned vector has the
474    /// minimum *capacity* specified, the vector will have a zero *length*. For
475    /// an explanation of the difference between length and capacity, see
476    /// *[Capacity and reallocation]*.
477    ///
478    /// If it is important to know the exact allocated capacity of a `Vec`,
479    /// always use the [`capacity`] method after construction.
480    ///
481    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
482    /// and the capacity will always be `usize::MAX`.
483    ///
484    /// [Capacity and reallocation]: #capacity-and-reallocation
485    /// [`capacity`]: Vec::capacity
486    ///
487    /// # Panics
488    ///
489    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
490    ///
491    /// # Examples
492    ///
493    /// ```
494    /// let mut vec = Vec::with_capacity(10);
495    ///
496    /// // The vector contains no items, even though it has capacity for more
497    /// assert_eq!(vec.len(), 0);
498    /// assert!(vec.capacity() >= 10);
499    ///
500    /// // These are all done without reallocating...
501    /// for i in 0..10 {
502    ///     vec.push(i);
503    /// }
504    /// assert_eq!(vec.len(), 10);
505    /// assert!(vec.capacity() >= 10);
506    ///
507    /// // ...but this may make the vector reallocate
508    /// vec.push(11);
509    /// assert_eq!(vec.len(), 11);
510    /// assert!(vec.capacity() >= 11);
511    ///
512    /// // A vector of a zero-sized type will always over-allocate, since no
513    /// // allocation is necessary
514    /// let vec_units = Vec::<()>::with_capacity(10);
515    /// assert_eq!(vec_units.capacity(), usize::MAX);
516    /// ```
517    #[cfg(not(no_global_oom_handling))]
518    #[inline]
519    #[stable(feature = "rust1", since = "1.0.0")]
520    #[must_use]
521    #[rustc_diagnostic_item = "vec_with_capacity"]
522    pub fn with_capacity(capacity: usize) -> Self {
523        Self::with_capacity_in(capacity, Global)
524    }
525
526    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
527    ///
528    /// The vector will be able to hold at least `capacity` elements without
529    /// reallocating. This method is allowed to allocate for more elements than
530    /// `capacity`. If `capacity` is zero, the vector will not allocate.
531    ///
532    /// # Errors
533    ///
534    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
535    /// or if the allocator reports allocation failure.
536    #[inline]
537    #[unstable(feature = "try_with_capacity", issue = "91913")]
538    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
539        Self::try_with_capacity_in(capacity, Global)
540    }
541
542    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
543    ///
544    /// # Safety
545    ///
546    /// This is highly unsafe, due to the number of invariants that aren't
547    /// checked:
548    ///
549    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
550    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
551    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
552    ///   only be non-null and aligned.
553    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
554    ///   if the pointer is required to be allocated.
555    ///   (`T` having a less strict alignment is not sufficient, the alignment really
556    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
557    ///   allocated and deallocated with the same layout.)
558    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
559    ///   nonzero, needs to be the same size as the pointer was allocated with.
560    ///   (Because similar to alignment, [`dealloc`] must be called with the same
561    ///   layout `size`.)
562    /// * `length` needs to be less than or equal to `capacity`.
563    /// * The first `length` values must be properly initialized values of type `T`.
564    /// * `capacity` needs to be the capacity that the pointer was allocated with,
565    ///   if the pointer is required to be allocated.
566    /// * The allocated size in bytes must be no larger than `isize::MAX`.
567    ///   See the safety documentation of [`pointer::offset`].
568    ///
569    /// These requirements are always upheld by any `ptr` that has been allocated
570    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
571    /// upheld.
572    ///
573    /// Violating these may cause problems like corrupting the allocator's
574    /// internal data structures. For example it is normally **not** safe
575    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
576    /// `size_t`, doing so is only safe if the array was initially allocated by
577    /// a `Vec` or `String`.
578    /// It's also not safe to build one from a `Vec<u16>` and its length, because
579    /// the allocator cares about the alignment, and these two types have different
580    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
581    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
582    /// these issues, it is often preferable to do casting/transmuting using
583    /// [`slice::from_raw_parts`] instead.
584    ///
585    /// The ownership of `ptr` is effectively transferred to the
586    /// `Vec<T>` which may then deallocate, reallocate or change the
587    /// contents of memory pointed to by the pointer at will. Ensure
588    /// that nothing else uses the pointer after calling this
589    /// function.
590    ///
591    /// [`String`]: crate::string::String
592    /// [`alloc::alloc`]: crate::alloc::alloc
593    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
594    ///
595    /// # Examples
596    ///
597    /// ```
598    /// use std::ptr;
599    ///
600    /// let v = vec![1, 2, 3];
601    ///
602    /// // Deconstruct the vector into parts.
603    /// let (p, len, cap) = v.into_raw_parts();
604    ///
605    /// unsafe {
606    ///     // Overwrite memory with 4, 5, 6
607    ///     for i in 0..len {
608    ///         ptr::write(p.add(i), 4 + i);
609    ///     }
610    ///
611    ///     // Put everything back together into a Vec
612    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
613    ///     assert_eq!(rebuilt, [4, 5, 6]);
614    /// }
615    /// ```
616    ///
617    /// Using memory that was allocated elsewhere:
618    ///
619    /// ```rust
620    /// use std::alloc::{alloc, Layout};
621    ///
622    /// fn main() {
623    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
624    ///
625    ///     let vec = unsafe {
626    ///         let mem = alloc(layout).cast::<u32>();
627    ///         if mem.is_null() {
628    ///             return;
629    ///         }
630    ///
631    ///         mem.write(1_000_000);
632    ///
633    ///         Vec::from_raw_parts(mem, 1, 16)
634    ///     };
635    ///
636    ///     assert_eq!(vec, &[1_000_000]);
637    ///     assert_eq!(vec.capacity(), 16);
638    /// }
639    /// ```
640    #[inline]
641    #[stable(feature = "rust1", since = "1.0.0")]
642    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
643        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
644    }
645
646    #[doc(alias = "from_non_null_parts")]
647    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
648    ///
649    /// # Safety
650    ///
651    /// This is highly unsafe, due to the number of invariants that aren't
652    /// checked:
653    ///
654    /// * `ptr` must have been allocated using the global allocator, such as via
655    ///   the [`alloc::alloc`] function.
656    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
657    ///   (`T` having a less strict alignment is not sufficient, the alignment really
658    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
659    ///   allocated and deallocated with the same layout.)
660    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
661    ///   to be the same size as the pointer was allocated with. (Because similar to
662    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
663    /// * `length` needs to be less than or equal to `capacity`.
664    /// * The first `length` values must be properly initialized values of type `T`.
665    /// * `capacity` needs to be the capacity that the pointer was allocated with.
666    /// * The allocated size in bytes must be no larger than `isize::MAX`.
667    ///   See the safety documentation of [`pointer::offset`].
668    ///
669    /// These requirements are always upheld by any `ptr` that has been allocated
670    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
671    /// upheld.
672    ///
673    /// Violating these may cause problems like corrupting the allocator's
674    /// internal data structures. For example it is normally **not** safe
675    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
676    /// `size_t`, doing so is only safe if the array was initially allocated by
677    /// a `Vec` or `String`.
678    /// It's also not safe to build one from a `Vec<u16>` and its length, because
679    /// the allocator cares about the alignment, and these two types have different
680    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
681    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
682    /// these issues, it is often preferable to do casting/transmuting using
683    /// [`NonNull::slice_from_raw_parts`] instead.
684    ///
685    /// The ownership of `ptr` is effectively transferred to the
686    /// `Vec<T>` which may then deallocate, reallocate or change the
687    /// contents of memory pointed to by the pointer at will. Ensure
688    /// that nothing else uses the pointer after calling this
689    /// function.
690    ///
691    /// [`String`]: crate::string::String
692    /// [`alloc::alloc`]: crate::alloc::alloc
693    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
694    ///
695    /// # Examples
696    ///
697    /// ```
698    /// #![feature(box_vec_non_null)]
699    ///
700    /// let v = vec![1, 2, 3];
701    ///
702    /// // Deconstruct the vector into parts.
703    /// let (p, len, cap) = v.into_parts();
704    ///
705    /// unsafe {
706    ///     // Overwrite memory with 4, 5, 6
707    ///     for i in 0..len {
708    ///         p.add(i).write(4 + i);
709    ///     }
710    ///
711    ///     // Put everything back together into a Vec
712    ///     let rebuilt = Vec::from_parts(p, len, cap);
713    ///     assert_eq!(rebuilt, [4, 5, 6]);
714    /// }
715    /// ```
716    ///
717    /// Using memory that was allocated elsewhere:
718    ///
719    /// ```rust
720    /// #![feature(box_vec_non_null)]
721    ///
722    /// use std::alloc::{alloc, Layout};
723    /// use std::ptr::NonNull;
724    ///
725    /// fn main() {
726    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
727    ///
728    ///     let vec = unsafe {
729    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
730    ///             return;
731    ///         };
732    ///
733    ///         mem.write(1_000_000);
734    ///
735    ///         Vec::from_parts(mem, 1, 16)
736    ///     };
737    ///
738    ///     assert_eq!(vec, &[1_000_000]);
739    ///     assert_eq!(vec.capacity(), 16);
740    /// }
741    /// ```
742    #[inline]
743    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
744    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
745        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
746    }
747
748    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
749    ///
750    /// Returns the raw pointer to the underlying data, the length of
751    /// the vector (in elements), and the allocated capacity of the
752    /// data (in elements). These are the same arguments in the same
753    /// order as the arguments to [`from_raw_parts`].
754    ///
755    /// After calling this function, the caller is responsible for the
756    /// memory previously managed by the `Vec`. Most often, one does
757    /// this by converting the raw pointer, length, and capacity back
758    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
759    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
760    /// any method that calls [`dealloc`] with a layout of
761    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
762    /// capacity is zero, nothing needs to be done.
763    ///
764    /// [`from_raw_parts`]: Vec::from_raw_parts
765    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
766    ///
767    /// # Examples
768    ///
769    /// ```
770    /// let v: Vec<i32> = vec![-1, 0, 1];
771    ///
772    /// let (ptr, len, cap) = v.into_raw_parts();
773    ///
774    /// let rebuilt = unsafe {
775    ///     // We can now make changes to the components, such as
776    ///     // transmuting the raw pointer to a compatible type.
777    ///     let ptr = ptr as *mut u32;
778    ///
779    ///     Vec::from_raw_parts(ptr, len, cap)
780    /// };
781    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
782    /// ```
783    #[must_use = "losing the pointer will leak memory"]
784    #[stable(feature = "vec_into_raw_parts", since = "CURRENT_RUSTC_VERSION")]
785    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
786        let mut me = ManuallyDrop::new(self);
787        (me.as_mut_ptr(), me.len(), me.capacity())
788    }
789
790    #[doc(alias = "into_non_null_parts")]
791    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
792    ///
793    /// Returns the `NonNull` pointer to the underlying data, the length of
794    /// the vector (in elements), and the allocated capacity of the
795    /// data (in elements). These are the same arguments in the same
796    /// order as the arguments to [`from_parts`].
797    ///
798    /// After calling this function, the caller is responsible for the
799    /// memory previously managed by the `Vec`. The only way to do
800    /// this is to convert the `NonNull` pointer, length, and capacity back
801    /// into a `Vec` with the [`from_parts`] function, allowing
802    /// the destructor to perform the cleanup.
803    ///
804    /// [`from_parts`]: Vec::from_parts
805    ///
806    /// # Examples
807    ///
808    /// ```
809    /// #![feature(box_vec_non_null)]
810    ///
811    /// let v: Vec<i32> = vec![-1, 0, 1];
812    ///
813    /// let (ptr, len, cap) = v.into_parts();
814    ///
815    /// let rebuilt = unsafe {
816    ///     // We can now make changes to the components, such as
817    ///     // transmuting the raw pointer to a compatible type.
818    ///     let ptr = ptr.cast::<u32>();
819    ///
820    ///     Vec::from_parts(ptr, len, cap)
821    /// };
822    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
823    /// ```
824    #[must_use = "losing the pointer will leak memory"]
825    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
826    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
827        let (ptr, len, capacity) = self.into_raw_parts();
828        // SAFETY: A `Vec` always has a non-null pointer.
829        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
830    }
831}
832
833impl<T, A: Allocator> Vec<T, A> {
834    /// Constructs a new, empty `Vec<T, A>`.
835    ///
836    /// The vector will not allocate until elements are pushed onto it.
837    ///
838    /// # Examples
839    ///
840    /// ```
841    /// #![feature(allocator_api)]
842    ///
843    /// use std::alloc::System;
844    ///
845    /// # #[allow(unused_mut)]
846    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
847    /// ```
848    #[inline]
849    #[unstable(feature = "allocator_api", issue = "32838")]
850    pub const fn new_in(alloc: A) -> Self {
851        Vec { buf: RawVec::new_in(alloc), len: 0 }
852    }
853
854    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
855    /// with the provided allocator.
856    ///
857    /// The vector will be able to hold at least `capacity` elements without
858    /// reallocating. This method is allowed to allocate for more elements than
859    /// `capacity`. If `capacity` is zero, the vector will not allocate.
860    ///
861    /// It is important to note that although the returned vector has the
862    /// minimum *capacity* specified, the vector will have a zero *length*. For
863    /// an explanation of the difference between length and capacity, see
864    /// *[Capacity and reallocation]*.
865    ///
866    /// If it is important to know the exact allocated capacity of a `Vec`,
867    /// always use the [`capacity`] method after construction.
868    ///
869    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
870    /// and the capacity will always be `usize::MAX`.
871    ///
872    /// [Capacity and reallocation]: #capacity-and-reallocation
873    /// [`capacity`]: Vec::capacity
874    ///
875    /// # Panics
876    ///
877    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
878    ///
879    /// # Examples
880    ///
881    /// ```
882    /// #![feature(allocator_api)]
883    ///
884    /// use std::alloc::System;
885    ///
886    /// let mut vec = Vec::with_capacity_in(10, System);
887    ///
888    /// // The vector contains no items, even though it has capacity for more
889    /// assert_eq!(vec.len(), 0);
890    /// assert!(vec.capacity() >= 10);
891    ///
892    /// // These are all done without reallocating...
893    /// for i in 0..10 {
894    ///     vec.push(i);
895    /// }
896    /// assert_eq!(vec.len(), 10);
897    /// assert!(vec.capacity() >= 10);
898    ///
899    /// // ...but this may make the vector reallocate
900    /// vec.push(11);
901    /// assert_eq!(vec.len(), 11);
902    /// assert!(vec.capacity() >= 11);
903    ///
904    /// // A vector of a zero-sized type will always over-allocate, since no
905    /// // allocation is necessary
906    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
907    /// assert_eq!(vec_units.capacity(), usize::MAX);
908    /// ```
909    #[cfg(not(no_global_oom_handling))]
910    #[inline]
911    #[unstable(feature = "allocator_api", issue = "32838")]
912    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
913        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
914    }
915
916    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
917    /// with the provided allocator.
918    ///
919    /// The vector will be able to hold at least `capacity` elements without
920    /// reallocating. This method is allowed to allocate for more elements than
921    /// `capacity`. If `capacity` is zero, the vector will not allocate.
922    ///
923    /// # Errors
924    ///
925    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
926    /// or if the allocator reports allocation failure.
927    #[inline]
928    #[unstable(feature = "allocator_api", issue = "32838")]
929    // #[unstable(feature = "try_with_capacity", issue = "91913")]
930    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
931        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
932    }
933
934    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
935    /// and an allocator.
936    ///
937    /// # Safety
938    ///
939    /// This is highly unsafe, due to the number of invariants that aren't
940    /// checked:
941    ///
942    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
943    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
944    ///   (`T` having a less strict alignment is not sufficient, the alignment really
945    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
946    ///   allocated and deallocated with the same layout.)
947    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
948    ///   to be the same size as the pointer was allocated with. (Because similar to
949    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
950    /// * `length` needs to be less than or equal to `capacity`.
951    /// * The first `length` values must be properly initialized values of type `T`.
952    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
953    /// * The allocated size in bytes must be no larger than `isize::MAX`.
954    ///   See the safety documentation of [`pointer::offset`].
955    ///
956    /// These requirements are always upheld by any `ptr` that has been allocated
957    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
958    /// upheld.
959    ///
960    /// Violating these may cause problems like corrupting the allocator's
961    /// internal data structures. For example it is **not** safe
962    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
963    /// It's also not safe to build one from a `Vec<u16>` and its length, because
964    /// the allocator cares about the alignment, and these two types have different
965    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
966    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
967    ///
968    /// The ownership of `ptr` is effectively transferred to the
969    /// `Vec<T>` which may then deallocate, reallocate or change the
970    /// contents of memory pointed to by the pointer at will. Ensure
971    /// that nothing else uses the pointer after calling this
972    /// function.
973    ///
974    /// [`String`]: crate::string::String
975    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
976    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
977    /// [*fit*]: crate::alloc::Allocator#memory-fitting
978    ///
979    /// # Examples
980    ///
981    /// ```
982    /// #![feature(allocator_api)]
983    ///
984    /// use std::alloc::System;
985    ///
986    /// use std::ptr;
987    ///
988    /// let mut v = Vec::with_capacity_in(3, System);
989    /// v.push(1);
990    /// v.push(2);
991    /// v.push(3);
992    ///
993    /// // Deconstruct the vector into parts.
994    /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
995    ///
996    /// unsafe {
997    ///     // Overwrite memory with 4, 5, 6
998    ///     for i in 0..len {
999    ///         ptr::write(p.add(i), 4 + i);
1000    ///     }
1001    ///
1002    ///     // Put everything back together into a Vec
1003    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1004    ///     assert_eq!(rebuilt, [4, 5, 6]);
1005    /// }
1006    /// ```
1007    ///
1008    /// Using memory that was allocated elsewhere:
1009    ///
1010    /// ```rust
1011    /// #![feature(allocator_api)]
1012    ///
1013    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1014    ///
1015    /// fn main() {
1016    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1017    ///
1018    ///     let vec = unsafe {
1019    ///         let mem = match Global.allocate(layout) {
1020    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1021    ///             Err(AllocError) => return,
1022    ///         };
1023    ///
1024    ///         mem.write(1_000_000);
1025    ///
1026    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1027    ///     };
1028    ///
1029    ///     assert_eq!(vec, &[1_000_000]);
1030    ///     assert_eq!(vec.capacity(), 16);
1031    /// }
1032    /// ```
1033    #[inline]
1034    #[unstable(feature = "allocator_api", issue = "32838")]
1035    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1036        ub_checks::assert_unsafe_precondition!(
1037            check_library_ub,
1038            "Vec::from_raw_parts_in requires that length <= capacity",
1039            (length: usize = length, capacity: usize = capacity) => length <= capacity
1040        );
1041        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1042    }
1043
1044    #[doc(alias = "from_non_null_parts_in")]
1045    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1046    /// and an allocator.
1047    ///
1048    /// # Safety
1049    ///
1050    /// This is highly unsafe, due to the number of invariants that aren't
1051    /// checked:
1052    ///
1053    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1054    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1055    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1056    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1057    ///   allocated and deallocated with the same layout.)
1058    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1059    ///   to be the same size as the pointer was allocated with. (Because similar to
1060    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1061    /// * `length` needs to be less than or equal to `capacity`.
1062    /// * The first `length` values must be properly initialized values of type `T`.
1063    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1064    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1065    ///   See the safety documentation of [`pointer::offset`].
1066    ///
1067    /// These requirements are always upheld by any `ptr` that has been allocated
1068    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1069    /// upheld.
1070    ///
1071    /// Violating these may cause problems like corrupting the allocator's
1072    /// internal data structures. For example it is **not** safe
1073    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1074    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1075    /// the allocator cares about the alignment, and these two types have different
1076    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1077    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1078    ///
1079    /// The ownership of `ptr` is effectively transferred to the
1080    /// `Vec<T>` which may then deallocate, reallocate or change the
1081    /// contents of memory pointed to by the pointer at will. Ensure
1082    /// that nothing else uses the pointer after calling this
1083    /// function.
1084    ///
1085    /// [`String`]: crate::string::String
1086    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1087    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1088    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1089    ///
1090    /// # Examples
1091    ///
1092    /// ```
1093    /// #![feature(allocator_api, box_vec_non_null)]
1094    ///
1095    /// use std::alloc::System;
1096    ///
1097    /// let mut v = Vec::with_capacity_in(3, System);
1098    /// v.push(1);
1099    /// v.push(2);
1100    /// v.push(3);
1101    ///
1102    /// // Deconstruct the vector into parts.
1103    /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1104    ///
1105    /// unsafe {
1106    ///     // Overwrite memory with 4, 5, 6
1107    ///     for i in 0..len {
1108    ///         p.add(i).write(4 + i);
1109    ///     }
1110    ///
1111    ///     // Put everything back together into a Vec
1112    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1113    ///     assert_eq!(rebuilt, [4, 5, 6]);
1114    /// }
1115    /// ```
1116    ///
1117    /// Using memory that was allocated elsewhere:
1118    ///
1119    /// ```rust
1120    /// #![feature(allocator_api, box_vec_non_null)]
1121    ///
1122    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1123    ///
1124    /// fn main() {
1125    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1126    ///
1127    ///     let vec = unsafe {
1128    ///         let mem = match Global.allocate(layout) {
1129    ///             Ok(mem) => mem.cast::<u32>(),
1130    ///             Err(AllocError) => return,
1131    ///         };
1132    ///
1133    ///         mem.write(1_000_000);
1134    ///
1135    ///         Vec::from_parts_in(mem, 1, 16, Global)
1136    ///     };
1137    ///
1138    ///     assert_eq!(vec, &[1_000_000]);
1139    ///     assert_eq!(vec.capacity(), 16);
1140    /// }
1141    /// ```
1142    #[inline]
1143    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1144    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1145    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1146        ub_checks::assert_unsafe_precondition!(
1147            check_library_ub,
1148            "Vec::from_parts_in requires that length <= capacity",
1149            (length: usize = length, capacity: usize = capacity) => length <= capacity
1150        );
1151        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1152    }
1153
1154    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1155    ///
1156    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1157    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1158    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1159    ///
1160    /// After calling this function, the caller is responsible for the
1161    /// memory previously managed by the `Vec`. The only way to do
1162    /// this is to convert the raw pointer, length, and capacity back
1163    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1164    /// the destructor to perform the cleanup.
1165    ///
1166    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1167    ///
1168    /// # Examples
1169    ///
1170    /// ```
1171    /// #![feature(allocator_api)]
1172    ///
1173    /// use std::alloc::System;
1174    ///
1175    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1176    /// v.push(-1);
1177    /// v.push(0);
1178    /// v.push(1);
1179    ///
1180    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1181    ///
1182    /// let rebuilt = unsafe {
1183    ///     // We can now make changes to the components, such as
1184    ///     // transmuting the raw pointer to a compatible type.
1185    ///     let ptr = ptr as *mut u32;
1186    ///
1187    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1188    /// };
1189    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1190    /// ```
1191    #[must_use = "losing the pointer will leak memory"]
1192    #[unstable(feature = "allocator_api", issue = "32838")]
1193    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1194        let mut me = ManuallyDrop::new(self);
1195        let len = me.len();
1196        let capacity = me.capacity();
1197        let ptr = me.as_mut_ptr();
1198        let alloc = unsafe { ptr::read(me.allocator()) };
1199        (ptr, len, capacity, alloc)
1200    }
1201
1202    #[doc(alias = "into_non_null_parts_with_alloc")]
1203    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1204    ///
1205    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1206    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1207    /// arguments in the same order as the arguments to [`from_parts_in`].
1208    ///
1209    /// After calling this function, the caller is responsible for the
1210    /// memory previously managed by the `Vec`. The only way to do
1211    /// this is to convert the `NonNull` pointer, length, and capacity back
1212    /// into a `Vec` with the [`from_parts_in`] function, allowing
1213    /// the destructor to perform the cleanup.
1214    ///
1215    /// [`from_parts_in`]: Vec::from_parts_in
1216    ///
1217    /// # Examples
1218    ///
1219    /// ```
1220    /// #![feature(allocator_api, box_vec_non_null)]
1221    ///
1222    /// use std::alloc::System;
1223    ///
1224    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1225    /// v.push(-1);
1226    /// v.push(0);
1227    /// v.push(1);
1228    ///
1229    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1230    ///
1231    /// let rebuilt = unsafe {
1232    ///     // We can now make changes to the components, such as
1233    ///     // transmuting the raw pointer to a compatible type.
1234    ///     let ptr = ptr.cast::<u32>();
1235    ///
1236    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1237    /// };
1238    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1239    /// ```
1240    #[must_use = "losing the pointer will leak memory"]
1241    #[unstable(feature = "allocator_api", issue = "32838")]
1242    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1243    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1244        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1245        // SAFETY: A `Vec` always has a non-null pointer.
1246        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1247    }
1248
1249    /// Returns the total number of elements the vector can hold without
1250    /// reallocating.
1251    ///
1252    /// # Examples
1253    ///
1254    /// ```
1255    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1256    /// vec.push(42);
1257    /// assert!(vec.capacity() >= 10);
1258    /// ```
1259    ///
1260    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1261    ///
1262    /// ```
1263    /// #[derive(Clone)]
1264    /// struct ZeroSized;
1265    ///
1266    /// fn main() {
1267    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1268    ///     let v = vec![ZeroSized; 0];
1269    ///     assert_eq!(v.capacity(), usize::MAX);
1270    /// }
1271    /// ```
1272    #[inline]
1273    #[stable(feature = "rust1", since = "1.0.0")]
1274    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1275    pub const fn capacity(&self) -> usize {
1276        self.buf.capacity()
1277    }
1278
1279    /// Reserves capacity for at least `additional` more elements to be inserted
1280    /// in the given `Vec<T>`. The collection may reserve more space to
1281    /// speculatively avoid frequent reallocations. After calling `reserve`,
1282    /// capacity will be greater than or equal to `self.len() + additional`.
1283    /// Does nothing if capacity is already sufficient.
1284    ///
1285    /// # Panics
1286    ///
1287    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1288    ///
1289    /// # Examples
1290    ///
1291    /// ```
1292    /// let mut vec = vec![1];
1293    /// vec.reserve(10);
1294    /// assert!(vec.capacity() >= 11);
1295    /// ```
1296    #[cfg(not(no_global_oom_handling))]
1297    #[stable(feature = "rust1", since = "1.0.0")]
1298    #[rustc_diagnostic_item = "vec_reserve"]
1299    pub fn reserve(&mut self, additional: usize) {
1300        self.buf.reserve(self.len, additional);
1301    }
1302
1303    /// Reserves the minimum capacity for at least `additional` more elements to
1304    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1305    /// deliberately over-allocate to speculatively avoid frequent allocations.
1306    /// After calling `reserve_exact`, capacity will be greater than or equal to
1307    /// `self.len() + additional`. Does nothing if the capacity is already
1308    /// sufficient.
1309    ///
1310    /// Note that the allocator may give the collection more space than it
1311    /// requests. Therefore, capacity can not be relied upon to be precisely
1312    /// minimal. Prefer [`reserve`] if future insertions are expected.
1313    ///
1314    /// [`reserve`]: Vec::reserve
1315    ///
1316    /// # Panics
1317    ///
1318    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1319    ///
1320    /// # Examples
1321    ///
1322    /// ```
1323    /// let mut vec = vec![1];
1324    /// vec.reserve_exact(10);
1325    /// assert!(vec.capacity() >= 11);
1326    /// ```
1327    #[cfg(not(no_global_oom_handling))]
1328    #[stable(feature = "rust1", since = "1.0.0")]
1329    pub fn reserve_exact(&mut self, additional: usize) {
1330        self.buf.reserve_exact(self.len, additional);
1331    }
1332
1333    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1334    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1335    /// frequent reallocations. After calling `try_reserve`, capacity will be
1336    /// greater than or equal to `self.len() + additional` if it returns
1337    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1338    /// preserves the contents even if an error occurs.
1339    ///
1340    /// # Errors
1341    ///
1342    /// If the capacity overflows, or the allocator reports a failure, then an error
1343    /// is returned.
1344    ///
1345    /// # Examples
1346    ///
1347    /// ```
1348    /// use std::collections::TryReserveError;
1349    ///
1350    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1351    ///     let mut output = Vec::new();
1352    ///
1353    ///     // Pre-reserve the memory, exiting if we can't
1354    ///     output.try_reserve(data.len())?;
1355    ///
1356    ///     // Now we know this can't OOM in the middle of our complex work
1357    ///     output.extend(data.iter().map(|&val| {
1358    ///         val * 2 + 5 // very complicated
1359    ///     }));
1360    ///
1361    ///     Ok(output)
1362    /// }
1363    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1364    /// ```
1365    #[stable(feature = "try_reserve", since = "1.57.0")]
1366    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1367        self.buf.try_reserve(self.len, additional)
1368    }
1369
1370    /// Tries to reserve the minimum capacity for at least `additional`
1371    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1372    /// this will not deliberately over-allocate to speculatively avoid frequent
1373    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1374    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1375    /// Does nothing if the capacity is already sufficient.
1376    ///
1377    /// Note that the allocator may give the collection more space than it
1378    /// requests. Therefore, capacity can not be relied upon to be precisely
1379    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1380    ///
1381    /// [`try_reserve`]: Vec::try_reserve
1382    ///
1383    /// # Errors
1384    ///
1385    /// If the capacity overflows, or the allocator reports a failure, then an error
1386    /// is returned.
1387    ///
1388    /// # Examples
1389    ///
1390    /// ```
1391    /// use std::collections::TryReserveError;
1392    ///
1393    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1394    ///     let mut output = Vec::new();
1395    ///
1396    ///     // Pre-reserve the memory, exiting if we can't
1397    ///     output.try_reserve_exact(data.len())?;
1398    ///
1399    ///     // Now we know this can't OOM in the middle of our complex work
1400    ///     output.extend(data.iter().map(|&val| {
1401    ///         val * 2 + 5 // very complicated
1402    ///     }));
1403    ///
1404    ///     Ok(output)
1405    /// }
1406    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1407    /// ```
1408    #[stable(feature = "try_reserve", since = "1.57.0")]
1409    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1410        self.buf.try_reserve_exact(self.len, additional)
1411    }
1412
1413    /// Shrinks the capacity of the vector as much as possible.
1414    ///
1415    /// The behavior of this method depends on the allocator, which may either shrink the vector
1416    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1417    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1418    ///
1419    /// [`with_capacity`]: Vec::with_capacity
1420    ///
1421    /// # Examples
1422    ///
1423    /// ```
1424    /// let mut vec = Vec::with_capacity(10);
1425    /// vec.extend([1, 2, 3]);
1426    /// assert!(vec.capacity() >= 10);
1427    /// vec.shrink_to_fit();
1428    /// assert!(vec.capacity() >= 3);
1429    /// ```
1430    #[cfg(not(no_global_oom_handling))]
1431    #[stable(feature = "rust1", since = "1.0.0")]
1432    #[inline]
1433    pub fn shrink_to_fit(&mut self) {
1434        // The capacity is never less than the length, and there's nothing to do when
1435        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1436        // by only calling it with a greater capacity.
1437        if self.capacity() > self.len {
1438            self.buf.shrink_to_fit(self.len);
1439        }
1440    }
1441
1442    /// Shrinks the capacity of the vector with a lower bound.
1443    ///
1444    /// The capacity will remain at least as large as both the length
1445    /// and the supplied value.
1446    ///
1447    /// If the current capacity is less than the lower limit, this is a no-op.
1448    ///
1449    /// # Examples
1450    ///
1451    /// ```
1452    /// let mut vec = Vec::with_capacity(10);
1453    /// vec.extend([1, 2, 3]);
1454    /// assert!(vec.capacity() >= 10);
1455    /// vec.shrink_to(4);
1456    /// assert!(vec.capacity() >= 4);
1457    /// vec.shrink_to(0);
1458    /// assert!(vec.capacity() >= 3);
1459    /// ```
1460    #[cfg(not(no_global_oom_handling))]
1461    #[stable(feature = "shrink_to", since = "1.56.0")]
1462    pub fn shrink_to(&mut self, min_capacity: usize) {
1463        if self.capacity() > min_capacity {
1464            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1465        }
1466    }
1467
1468    /// Converts the vector into [`Box<[T]>`][owned slice].
1469    ///
1470    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1471    ///
1472    /// [owned slice]: Box
1473    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1474    ///
1475    /// # Examples
1476    ///
1477    /// ```
1478    /// let v = vec![1, 2, 3];
1479    ///
1480    /// let slice = v.into_boxed_slice();
1481    /// ```
1482    ///
1483    /// Any excess capacity is removed:
1484    ///
1485    /// ```
1486    /// let mut vec = Vec::with_capacity(10);
1487    /// vec.extend([1, 2, 3]);
1488    ///
1489    /// assert!(vec.capacity() >= 10);
1490    /// let slice = vec.into_boxed_slice();
1491    /// assert_eq!(slice.into_vec().capacity(), 3);
1492    /// ```
1493    #[cfg(not(no_global_oom_handling))]
1494    #[stable(feature = "rust1", since = "1.0.0")]
1495    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1496        unsafe {
1497            self.shrink_to_fit();
1498            let me = ManuallyDrop::new(self);
1499            let buf = ptr::read(&me.buf);
1500            let len = me.len();
1501            buf.into_box(len).assume_init()
1502        }
1503    }
1504
1505    /// Shortens the vector, keeping the first `len` elements and dropping
1506    /// the rest.
1507    ///
1508    /// If `len` is greater or equal to the vector's current length, this has
1509    /// no effect.
1510    ///
1511    /// The [`drain`] method can emulate `truncate`, but causes the excess
1512    /// elements to be returned instead of dropped.
1513    ///
1514    /// Note that this method has no effect on the allocated capacity
1515    /// of the vector.
1516    ///
1517    /// # Examples
1518    ///
1519    /// Truncating a five element vector to two elements:
1520    ///
1521    /// ```
1522    /// let mut vec = vec![1, 2, 3, 4, 5];
1523    /// vec.truncate(2);
1524    /// assert_eq!(vec, [1, 2]);
1525    /// ```
1526    ///
1527    /// No truncation occurs when `len` is greater than the vector's current
1528    /// length:
1529    ///
1530    /// ```
1531    /// let mut vec = vec![1, 2, 3];
1532    /// vec.truncate(8);
1533    /// assert_eq!(vec, [1, 2, 3]);
1534    /// ```
1535    ///
1536    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1537    /// method.
1538    ///
1539    /// ```
1540    /// let mut vec = vec![1, 2, 3];
1541    /// vec.truncate(0);
1542    /// assert_eq!(vec, []);
1543    /// ```
1544    ///
1545    /// [`clear`]: Vec::clear
1546    /// [`drain`]: Vec::drain
1547    #[stable(feature = "rust1", since = "1.0.0")]
1548    pub fn truncate(&mut self, len: usize) {
1549        // This is safe because:
1550        //
1551        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1552        //   case avoids creating an invalid slice, and
1553        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1554        //   such that no value will be dropped twice in case `drop_in_place`
1555        //   were to panic once (if it panics twice, the program aborts).
1556        unsafe {
1557            // Note: It's intentional that this is `>` and not `>=`.
1558            //       Changing it to `>=` has negative performance
1559            //       implications in some cases. See #78884 for more.
1560            if len > self.len {
1561                return;
1562            }
1563            let remaining_len = self.len - len;
1564            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1565            self.len = len;
1566            ptr::drop_in_place(s);
1567        }
1568    }
1569
1570    /// Extracts a slice containing the entire vector.
1571    ///
1572    /// Equivalent to `&s[..]`.
1573    ///
1574    /// # Examples
1575    ///
1576    /// ```
1577    /// use std::io::{self, Write};
1578    /// let buffer = vec![1, 2, 3, 5, 8];
1579    /// io::sink().write(buffer.as_slice()).unwrap();
1580    /// ```
1581    #[inline]
1582    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1583    #[rustc_diagnostic_item = "vec_as_slice"]
1584    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1585    pub const fn as_slice(&self) -> &[T] {
1586        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1587        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1588        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1589        // "wrap" through overflowing memory addresses.
1590        //
1591        // * Vec API guarantees that self.buf:
1592        //      * contains only properly-initialized items within 0..len
1593        //      * is aligned, contiguous, and valid for `len` reads
1594        //      * obeys size and address-wrapping constraints
1595        //
1596        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1597        //   check ensures that it is not possible to mutably alias `self.buf` within the
1598        //   returned lifetime.
1599        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1600    }
1601
1602    /// Extracts a mutable slice of the entire vector.
1603    ///
1604    /// Equivalent to `&mut s[..]`.
1605    ///
1606    /// # Examples
1607    ///
1608    /// ```
1609    /// use std::io::{self, Read};
1610    /// let mut buffer = vec![0; 3];
1611    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1612    /// ```
1613    #[inline]
1614    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1615    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1616    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1617    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1618        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1619        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1620        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1621        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1622        //
1623        // * Vec API guarantees that self.buf:
1624        //      * contains only properly-initialized items within 0..len
1625        //      * is aligned, contiguous, and valid for `len` reads
1626        //      * obeys size and address-wrapping constraints
1627        //
1628        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1629        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1630        //   within the returned lifetime.
1631        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1632    }
1633
1634    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1635    /// valid for zero sized reads if the vector didn't allocate.
1636    ///
1637    /// The caller must ensure that the vector outlives the pointer this
1638    /// function returns, or else it will end up dangling.
1639    /// Modifying the vector may cause its buffer to be reallocated,
1640    /// which would also make any pointers to it invalid.
1641    ///
1642    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1643    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1644    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1645    ///
1646    /// This method guarantees that for the purpose of the aliasing model, this method
1647    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1648    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1649    /// and [`as_non_null`].
1650    /// Note that calling other methods that materialize mutable references to the slice,
1651    /// or mutable references to specific elements you are planning on accessing through this pointer,
1652    /// as well as writing to those elements, may still invalidate this pointer.
1653    /// See the second example below for how this guarantee can be used.
1654    ///
1655    ///
1656    /// # Examples
1657    ///
1658    /// ```
1659    /// let x = vec![1, 2, 4];
1660    /// let x_ptr = x.as_ptr();
1661    ///
1662    /// unsafe {
1663    ///     for i in 0..x.len() {
1664    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1665    ///     }
1666    /// }
1667    /// ```
1668    ///
1669    /// Due to the aliasing guarantee, the following code is legal:
1670    ///
1671    /// ```rust
1672    /// unsafe {
1673    ///     let mut v = vec![0, 1, 2];
1674    ///     let ptr1 = v.as_ptr();
1675    ///     let _ = ptr1.read();
1676    ///     let ptr2 = v.as_mut_ptr().offset(2);
1677    ///     ptr2.write(2);
1678    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1679    ///     // because it mutated a different element:
1680    ///     let _ = ptr1.read();
1681    /// }
1682    /// ```
1683    ///
1684    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1685    /// [`as_ptr`]: Vec::as_ptr
1686    /// [`as_non_null`]: Vec::as_non_null
1687    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1688    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1689    #[rustc_never_returns_null_ptr]
1690    #[rustc_as_ptr]
1691    #[inline]
1692    pub const fn as_ptr(&self) -> *const T {
1693        // We shadow the slice method of the same name to avoid going through
1694        // `deref`, which creates an intermediate reference.
1695        self.buf.ptr()
1696    }
1697
1698    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1699    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1700    ///
1701    /// The caller must ensure that the vector outlives the pointer this
1702    /// function returns, or else it will end up dangling.
1703    /// Modifying the vector may cause its buffer to be reallocated,
1704    /// which would also make any pointers to it invalid.
1705    ///
1706    /// This method guarantees that for the purpose of the aliasing model, this method
1707    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1708    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1709    /// and [`as_non_null`].
1710    /// Note that calling other methods that materialize references to the slice,
1711    /// or references to specific elements you are planning on accessing through this pointer,
1712    /// may still invalidate this pointer.
1713    /// See the second example below for how this guarantee can be used.
1714    ///
1715    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1716    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1717    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1718    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1719    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1720    ///
1721    /// # Examples
1722    ///
1723    /// ```
1724    /// // Allocate vector big enough for 4 elements.
1725    /// let size = 4;
1726    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1727    /// let x_ptr = x.as_mut_ptr();
1728    ///
1729    /// // Initialize elements via raw pointer writes, then set length.
1730    /// unsafe {
1731    ///     for i in 0..size {
1732    ///         *x_ptr.add(i) = i as i32;
1733    ///     }
1734    ///     x.set_len(size);
1735    /// }
1736    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1737    /// ```
1738    ///
1739    /// Due to the aliasing guarantee, the following code is legal:
1740    ///
1741    /// ```rust
1742    /// unsafe {
1743    ///     let mut v = vec![0];
1744    ///     let ptr1 = v.as_mut_ptr();
1745    ///     ptr1.write(1);
1746    ///     let ptr2 = v.as_mut_ptr();
1747    ///     ptr2.write(2);
1748    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1749    ///     ptr1.write(3);
1750    /// }
1751    /// ```
1752    ///
1753    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1754    ///
1755    /// ```
1756    /// use std::mem::{ManuallyDrop, MaybeUninit};
1757    ///
1758    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1759    /// let ptr = v.as_mut_ptr();
1760    /// let capacity = v.capacity();
1761    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1762    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1763    /// drop(unsafe { Box::from_raw(slice_ptr) });
1764    /// ```
1765    ///
1766    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1767    /// [`as_ptr`]: Vec::as_ptr
1768    /// [`as_non_null`]: Vec::as_non_null
1769    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1770    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1771    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1772    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1773    #[rustc_never_returns_null_ptr]
1774    #[rustc_as_ptr]
1775    #[inline]
1776    pub const fn as_mut_ptr(&mut self) -> *mut T {
1777        // We shadow the slice method of the same name to avoid going through
1778        // `deref_mut`, which creates an intermediate reference.
1779        self.buf.ptr()
1780    }
1781
1782    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1783    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1784    ///
1785    /// The caller must ensure that the vector outlives the pointer this
1786    /// function returns, or else it will end up dangling.
1787    /// Modifying the vector may cause its buffer to be reallocated,
1788    /// which would also make any pointers to it invalid.
1789    ///
1790    /// This method guarantees that for the purpose of the aliasing model, this method
1791    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1792    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1793    /// and [`as_non_null`].
1794    /// Note that calling other methods that materialize references to the slice,
1795    /// or references to specific elements you are planning on accessing through this pointer,
1796    /// may still invalidate this pointer.
1797    /// See the second example below for how this guarantee can be used.
1798    ///
1799    /// # Examples
1800    ///
1801    /// ```
1802    /// #![feature(box_vec_non_null)]
1803    ///
1804    /// // Allocate vector big enough for 4 elements.
1805    /// let size = 4;
1806    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1807    /// let x_ptr = x.as_non_null();
1808    ///
1809    /// // Initialize elements via raw pointer writes, then set length.
1810    /// unsafe {
1811    ///     for i in 0..size {
1812    ///         x_ptr.add(i).write(i as i32);
1813    ///     }
1814    ///     x.set_len(size);
1815    /// }
1816    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1817    /// ```
1818    ///
1819    /// Due to the aliasing guarantee, the following code is legal:
1820    ///
1821    /// ```rust
1822    /// #![feature(box_vec_non_null)]
1823    ///
1824    /// unsafe {
1825    ///     let mut v = vec![0];
1826    ///     let ptr1 = v.as_non_null();
1827    ///     ptr1.write(1);
1828    ///     let ptr2 = v.as_non_null();
1829    ///     ptr2.write(2);
1830    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1831    ///     ptr1.write(3);
1832    /// }
1833    /// ```
1834    ///
1835    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1836    /// [`as_ptr`]: Vec::as_ptr
1837    /// [`as_non_null`]: Vec::as_non_null
1838    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1839    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1840    #[inline]
1841    pub const fn as_non_null(&mut self) -> NonNull<T> {
1842        self.buf.non_null()
1843    }
1844
1845    /// Returns a reference to the underlying allocator.
1846    #[unstable(feature = "allocator_api", issue = "32838")]
1847    #[inline]
1848    pub fn allocator(&self) -> &A {
1849        self.buf.allocator()
1850    }
1851
1852    /// Forces the length of the vector to `new_len`.
1853    ///
1854    /// This is a low-level operation that maintains none of the normal
1855    /// invariants of the type. Normally changing the length of a vector
1856    /// is done using one of the safe operations instead, such as
1857    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1858    ///
1859    /// [`truncate`]: Vec::truncate
1860    /// [`resize`]: Vec::resize
1861    /// [`extend`]: Extend::extend
1862    /// [`clear`]: Vec::clear
1863    ///
1864    /// # Safety
1865    ///
1866    /// - `new_len` must be less than or equal to [`capacity()`].
1867    /// - The elements at `old_len..new_len` must be initialized.
1868    ///
1869    /// [`capacity()`]: Vec::capacity
1870    ///
1871    /// # Examples
1872    ///
1873    /// See [`spare_capacity_mut()`] for an example with safe
1874    /// initialization of capacity elements and use of this method.
1875    ///
1876    /// `set_len()` can be useful for situations in which the vector
1877    /// is serving as a buffer for other code, particularly over FFI:
1878    ///
1879    /// ```no_run
1880    /// # #![allow(dead_code)]
1881    /// # // This is just a minimal skeleton for the doc example;
1882    /// # // don't use this as a starting point for a real library.
1883    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1884    /// # const Z_OK: i32 = 0;
1885    /// # unsafe extern "C" {
1886    /// #     fn deflateGetDictionary(
1887    /// #         strm: *mut std::ffi::c_void,
1888    /// #         dictionary: *mut u8,
1889    /// #         dictLength: *mut usize,
1890    /// #     ) -> i32;
1891    /// # }
1892    /// # impl StreamWrapper {
1893    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1894    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1895    ///     let mut dict = Vec::with_capacity(32_768);
1896    ///     let mut dict_length = 0;
1897    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1898    ///     // 1. `dict_length` elements were initialized.
1899    ///     // 2. `dict_length` <= the capacity (32_768)
1900    ///     // which makes `set_len` safe to call.
1901    ///     unsafe {
1902    ///         // Make the FFI call...
1903    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1904    ///         if r == Z_OK {
1905    ///             // ...and update the length to what was initialized.
1906    ///             dict.set_len(dict_length);
1907    ///             Some(dict)
1908    ///         } else {
1909    ///             None
1910    ///         }
1911    ///     }
1912    /// }
1913    /// # }
1914    /// ```
1915    ///
1916    /// While the following example is sound, there is a memory leak since
1917    /// the inner vectors were not freed prior to the `set_len` call:
1918    ///
1919    /// ```
1920    /// let mut vec = vec![vec![1, 0, 0],
1921    ///                    vec![0, 1, 0],
1922    ///                    vec![0, 0, 1]];
1923    /// // SAFETY:
1924    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1925    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1926    /// unsafe {
1927    ///     vec.set_len(0);
1928    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1929    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1930    /// #   vec.set_len(3);
1931    /// }
1932    /// ```
1933    ///
1934    /// Normally, here, one would use [`clear`] instead to correctly drop
1935    /// the contents and thus not leak memory.
1936    ///
1937    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1938    #[inline]
1939    #[stable(feature = "rust1", since = "1.0.0")]
1940    pub unsafe fn set_len(&mut self, new_len: usize) {
1941        ub_checks::assert_unsafe_precondition!(
1942            check_library_ub,
1943            "Vec::set_len requires that new_len <= capacity()",
1944            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1945        );
1946
1947        self.len = new_len;
1948    }
1949
1950    /// Removes an element from the vector and returns it.
1951    ///
1952    /// The removed element is replaced by the last element of the vector.
1953    ///
1954    /// This does not preserve ordering of the remaining elements, but is *O*(1).
1955    /// If you need to preserve the element order, use [`remove`] instead.
1956    ///
1957    /// [`remove`]: Vec::remove
1958    ///
1959    /// # Panics
1960    ///
1961    /// Panics if `index` is out of bounds.
1962    ///
1963    /// # Examples
1964    ///
1965    /// ```
1966    /// let mut v = vec!["foo", "bar", "baz", "qux"];
1967    ///
1968    /// assert_eq!(v.swap_remove(1), "bar");
1969    /// assert_eq!(v, ["foo", "qux", "baz"]);
1970    ///
1971    /// assert_eq!(v.swap_remove(0), "foo");
1972    /// assert_eq!(v, ["baz", "qux"]);
1973    /// ```
1974    #[inline]
1975    #[stable(feature = "rust1", since = "1.0.0")]
1976    pub fn swap_remove(&mut self, index: usize) -> T {
1977        #[cold]
1978        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
1979        #[optimize(size)]
1980        fn assert_failed(index: usize, len: usize) -> ! {
1981            panic!("swap_remove index (is {index}) should be < len (is {len})");
1982        }
1983
1984        let len = self.len();
1985        if index >= len {
1986            assert_failed(index, len);
1987        }
1988        unsafe {
1989            // We replace self[index] with the last element. Note that if the
1990            // bounds check above succeeds there must be a last element (which
1991            // can be self[index] itself).
1992            let value = ptr::read(self.as_ptr().add(index));
1993            let base_ptr = self.as_mut_ptr();
1994            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1995            self.set_len(len - 1);
1996            value
1997        }
1998    }
1999
2000    /// Inserts an element at position `index` within the vector, shifting all
2001    /// elements after it to the right.
2002    ///
2003    /// # Panics
2004    ///
2005    /// Panics if `index > len`.
2006    ///
2007    /// # Examples
2008    ///
2009    /// ```
2010    /// let mut vec = vec!['a', 'b', 'c'];
2011    /// vec.insert(1, 'd');
2012    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2013    /// vec.insert(4, 'e');
2014    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2015    /// ```
2016    ///
2017    /// # Time complexity
2018    ///
2019    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2020    /// shifted to the right. In the worst case, all elements are shifted when
2021    /// the insertion index is 0.
2022    #[cfg(not(no_global_oom_handling))]
2023    #[stable(feature = "rust1", since = "1.0.0")]
2024    #[track_caller]
2025    pub fn insert(&mut self, index: usize, element: T) {
2026        let _ = self.insert_mut(index, element);
2027    }
2028
2029    /// Inserts an element at position `index` within the vector, shifting all
2030    /// elements after it to the right, and returning a reference to the new
2031    /// element.
2032    ///
2033    /// # Panics
2034    ///
2035    /// Panics if `index > len`.
2036    ///
2037    /// # Examples
2038    ///
2039    /// ```
2040    /// #![feature(push_mut)]
2041    /// let mut vec = vec![1, 3, 5, 9];
2042    /// let x = vec.insert_mut(3, 6);
2043    /// *x += 1;
2044    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2045    /// ```
2046    ///
2047    /// # Time complexity
2048    ///
2049    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2050    /// shifted to the right. In the worst case, all elements are shifted when
2051    /// the insertion index is 0.
2052    #[cfg(not(no_global_oom_handling))]
2053    #[inline]
2054    #[unstable(feature = "push_mut", issue = "135974")]
2055    #[track_caller]
2056    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2057    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2058        #[cold]
2059        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2060        #[track_caller]
2061        #[optimize(size)]
2062        fn assert_failed(index: usize, len: usize) -> ! {
2063            panic!("insertion index (is {index}) should be <= len (is {len})");
2064        }
2065
2066        let len = self.len();
2067        if index > len {
2068            assert_failed(index, len);
2069        }
2070
2071        // space for the new element
2072        if len == self.buf.capacity() {
2073            self.buf.grow_one();
2074        }
2075
2076        unsafe {
2077            // infallible
2078            // The spot to put the new value
2079            let p = self.as_mut_ptr().add(index);
2080            {
2081                if index < len {
2082                    // Shift everything over to make space. (Duplicating the
2083                    // `index`th element into two consecutive places.)
2084                    ptr::copy(p, p.add(1), len - index);
2085                }
2086                // Write it in, overwriting the first copy of the `index`th
2087                // element.
2088                ptr::write(p, element);
2089            }
2090            self.set_len(len + 1);
2091            &mut *p
2092        }
2093    }
2094
2095    /// Removes and returns the element at position `index` within the vector,
2096    /// shifting all elements after it to the left.
2097    ///
2098    /// Note: Because this shifts over the remaining elements, it has a
2099    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2100    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2101    /// elements from the beginning of the `Vec`, consider using
2102    /// [`VecDeque::pop_front`] instead.
2103    ///
2104    /// [`swap_remove`]: Vec::swap_remove
2105    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2106    ///
2107    /// # Panics
2108    ///
2109    /// Panics if `index` is out of bounds.
2110    ///
2111    /// # Examples
2112    ///
2113    /// ```
2114    /// let mut v = vec!['a', 'b', 'c'];
2115    /// assert_eq!(v.remove(1), 'b');
2116    /// assert_eq!(v, ['a', 'c']);
2117    /// ```
2118    #[stable(feature = "rust1", since = "1.0.0")]
2119    #[track_caller]
2120    #[rustc_confusables("delete", "take")]
2121    pub fn remove(&mut self, index: usize) -> T {
2122        #[cold]
2123        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2124        #[track_caller]
2125        #[optimize(size)]
2126        fn assert_failed(index: usize, len: usize) -> ! {
2127            panic!("removal index (is {index}) should be < len (is {len})");
2128        }
2129
2130        match self.try_remove(index) {
2131            Some(elem) => elem,
2132            None => assert_failed(index, self.len()),
2133        }
2134    }
2135
2136    /// Remove and return the element at position `index` within the vector,
2137    /// shifting all elements after it to the left, or [`None`] if it does not
2138    /// exist.
2139    ///
2140    /// Note: Because this shifts over the remaining elements, it has a
2141    /// worst-case performance of *O*(*n*). If you'd like to remove
2142    /// elements from the beginning of the `Vec`, consider using
2143    /// [`VecDeque::pop_front`] instead.
2144    ///
2145    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2146    ///
2147    /// # Examples
2148    ///
2149    /// ```
2150    /// #![feature(vec_try_remove)]
2151    /// let mut v = vec![1, 2, 3];
2152    /// assert_eq!(v.try_remove(0), Some(1));
2153    /// assert_eq!(v.try_remove(2), None);
2154    /// ```
2155    #[unstable(feature = "vec_try_remove", issue = "146954")]
2156    #[rustc_confusables("delete", "take", "remove")]
2157    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2158        let len = self.len();
2159        if index >= len {
2160            return None;
2161        }
2162        unsafe {
2163            // infallible
2164            let ret;
2165            {
2166                // the place we are taking from.
2167                let ptr = self.as_mut_ptr().add(index);
2168                // copy it out, unsafely having a copy of the value on
2169                // the stack and in the vector at the same time.
2170                ret = ptr::read(ptr);
2171
2172                // Shift everything down to fill in that spot.
2173                ptr::copy(ptr.add(1), ptr, len - index - 1);
2174            }
2175            self.set_len(len - 1);
2176            Some(ret)
2177        }
2178    }
2179
2180    /// Retains only the elements specified by the predicate.
2181    ///
2182    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2183    /// This method operates in place, visiting each element exactly once in the
2184    /// original order, and preserves the order of the retained elements.
2185    ///
2186    /// # Examples
2187    ///
2188    /// ```
2189    /// let mut vec = vec![1, 2, 3, 4];
2190    /// vec.retain(|&x| x % 2 == 0);
2191    /// assert_eq!(vec, [2, 4]);
2192    /// ```
2193    ///
2194    /// Because the elements are visited exactly once in the original order,
2195    /// external state may be used to decide which elements to keep.
2196    ///
2197    /// ```
2198    /// let mut vec = vec![1, 2, 3, 4, 5];
2199    /// let keep = [false, true, true, false, true];
2200    /// let mut iter = keep.iter();
2201    /// vec.retain(|_| *iter.next().unwrap());
2202    /// assert_eq!(vec, [2, 3, 5]);
2203    /// ```
2204    #[stable(feature = "rust1", since = "1.0.0")]
2205    pub fn retain<F>(&mut self, mut f: F)
2206    where
2207        F: FnMut(&T) -> bool,
2208    {
2209        self.retain_mut(|elem| f(elem));
2210    }
2211
2212    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2213    ///
2214    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2215    /// This method operates in place, visiting each element exactly once in the
2216    /// original order, and preserves the order of the retained elements.
2217    ///
2218    /// # Examples
2219    ///
2220    /// ```
2221    /// let mut vec = vec![1, 2, 3, 4];
2222    /// vec.retain_mut(|x| if *x <= 3 {
2223    ///     *x += 1;
2224    ///     true
2225    /// } else {
2226    ///     false
2227    /// });
2228    /// assert_eq!(vec, [2, 3, 4]);
2229    /// ```
2230    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2231    pub fn retain_mut<F>(&mut self, mut f: F)
2232    where
2233        F: FnMut(&mut T) -> bool,
2234    {
2235        let original_len = self.len();
2236
2237        if original_len == 0 {
2238            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2239            return;
2240        }
2241
2242        // Avoid double drop if the drop guard is not executed,
2243        // since we may make some holes during the process.
2244        unsafe { self.set_len(0) };
2245
2246        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2247        //      |<-              processed len   ->| ^- next to check
2248        //                  |<-  deleted cnt     ->|
2249        //      |<-              original_len                          ->|
2250        // Kept: Elements which predicate returns true on.
2251        // Hole: Moved or dropped element slot.
2252        // Unchecked: Unchecked valid elements.
2253        //
2254        // This drop guard will be invoked when predicate or `drop` of element panicked.
2255        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2256        // In cases when predicate and `drop` never panick, it will be optimized out.
2257        struct BackshiftOnDrop<'a, T, A: Allocator> {
2258            v: &'a mut Vec<T, A>,
2259            processed_len: usize,
2260            deleted_cnt: usize,
2261            original_len: usize,
2262        }
2263
2264        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2265            fn drop(&mut self) {
2266                if self.deleted_cnt > 0 {
2267                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2268                    unsafe {
2269                        ptr::copy(
2270                            self.v.as_ptr().add(self.processed_len),
2271                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2272                            self.original_len - self.processed_len,
2273                        );
2274                    }
2275                }
2276                // SAFETY: After filling holes, all items are in contiguous memory.
2277                unsafe {
2278                    self.v.set_len(self.original_len - self.deleted_cnt);
2279                }
2280            }
2281        }
2282
2283        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2284
2285        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2286            original_len: usize,
2287            f: &mut F,
2288            g: &mut BackshiftOnDrop<'_, T, A>,
2289        ) where
2290            F: FnMut(&mut T) -> bool,
2291        {
2292            while g.processed_len != original_len {
2293                // SAFETY: Unchecked element must be valid.
2294                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2295                if !f(cur) {
2296                    // Advance early to avoid double drop if `drop_in_place` panicked.
2297                    g.processed_len += 1;
2298                    g.deleted_cnt += 1;
2299                    // SAFETY: We never touch this element again after dropped.
2300                    unsafe { ptr::drop_in_place(cur) };
2301                    // We already advanced the counter.
2302                    if DELETED {
2303                        continue;
2304                    } else {
2305                        break;
2306                    }
2307                }
2308                if DELETED {
2309                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2310                    // We use copy for move, and never touch this element again.
2311                    unsafe {
2312                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2313                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2314                    }
2315                }
2316                g.processed_len += 1;
2317            }
2318        }
2319
2320        // Stage 1: Nothing was deleted.
2321        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2322
2323        // Stage 2: Some elements were deleted.
2324        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2325
2326        // All item are processed. This can be optimized to `set_len` by LLVM.
2327        drop(g);
2328    }
2329
2330    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2331    /// key.
2332    ///
2333    /// If the vector is sorted, this removes all duplicates.
2334    ///
2335    /// # Examples
2336    ///
2337    /// ```
2338    /// let mut vec = vec![10, 20, 21, 30, 20];
2339    ///
2340    /// vec.dedup_by_key(|i| *i / 10);
2341    ///
2342    /// assert_eq!(vec, [10, 20, 30, 20]);
2343    /// ```
2344    #[stable(feature = "dedup_by", since = "1.16.0")]
2345    #[inline]
2346    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2347    where
2348        F: FnMut(&mut T) -> K,
2349        K: PartialEq,
2350    {
2351        self.dedup_by(|a, b| key(a) == key(b))
2352    }
2353
2354    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2355    /// relation.
2356    ///
2357    /// The `same_bucket` function is passed references to two elements from the vector and
2358    /// must determine if the elements compare equal. The elements are passed in opposite order
2359    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2360    ///
2361    /// If the vector is sorted, this removes all duplicates.
2362    ///
2363    /// # Examples
2364    ///
2365    /// ```
2366    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2367    ///
2368    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2369    ///
2370    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2371    /// ```
2372    #[stable(feature = "dedup_by", since = "1.16.0")]
2373    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2374    where
2375        F: FnMut(&mut T, &mut T) -> bool,
2376    {
2377        let len = self.len();
2378        if len <= 1 {
2379            return;
2380        }
2381
2382        // Check if we ever want to remove anything.
2383        // This allows to use copy_non_overlapping in next cycle.
2384        // And avoids any memory writes if we don't need to remove anything.
2385        let mut first_duplicate_idx: usize = 1;
2386        let start = self.as_mut_ptr();
2387        while first_duplicate_idx != len {
2388            let found_duplicate = unsafe {
2389                // SAFETY: first_duplicate always in range [1..len)
2390                // Note that we start iteration from 1 so we never overflow.
2391                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2392                let current = start.add(first_duplicate_idx);
2393                // We explicitly say in docs that references are reversed.
2394                same_bucket(&mut *current, &mut *prev)
2395            };
2396            if found_duplicate {
2397                break;
2398            }
2399            first_duplicate_idx += 1;
2400        }
2401        // Don't need to remove anything.
2402        // We cannot get bigger than len.
2403        if first_duplicate_idx == len {
2404            return;
2405        }
2406
2407        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2408        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2409            /* Offset of the element we want to check if it is duplicate */
2410            read: usize,
2411
2412            /* Offset of the place where we want to place the non-duplicate
2413             * when we find it. */
2414            write: usize,
2415
2416            /* The Vec that would need correction if `same_bucket` panicked */
2417            vec: &'a mut Vec<T, A>,
2418        }
2419
2420        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2421            fn drop(&mut self) {
2422                /* This code gets executed when `same_bucket` panics */
2423
2424                /* SAFETY: invariant guarantees that `read - write`
2425                 * and `len - read` never overflow and that the copy is always
2426                 * in-bounds. */
2427                unsafe {
2428                    let ptr = self.vec.as_mut_ptr();
2429                    let len = self.vec.len();
2430
2431                    /* How many items were left when `same_bucket` panicked.
2432                     * Basically vec[read..].len() */
2433                    let items_left = len.wrapping_sub(self.read);
2434
2435                    /* Pointer to first item in vec[write..write+items_left] slice */
2436                    let dropped_ptr = ptr.add(self.write);
2437                    /* Pointer to first item in vec[read..] slice */
2438                    let valid_ptr = ptr.add(self.read);
2439
2440                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2441                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2442                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2443
2444                    /* How many items have been already dropped
2445                     * Basically vec[read..write].len() */
2446                    let dropped = self.read.wrapping_sub(self.write);
2447
2448                    self.vec.set_len(len - dropped);
2449                }
2450            }
2451        }
2452
2453        /* Drop items while going through Vec, it should be more efficient than
2454         * doing slice partition_dedup + truncate */
2455
2456        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2457        let mut gap =
2458            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2459        unsafe {
2460            // SAFETY: we checked that first_duplicate_idx in bounds before.
2461            // If drop panics, `gap` would remove this item without drop.
2462            ptr::drop_in_place(start.add(first_duplicate_idx));
2463        }
2464
2465        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2466         * are always in-bounds and read_ptr never aliases prev_ptr */
2467        unsafe {
2468            while gap.read < len {
2469                let read_ptr = start.add(gap.read);
2470                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2471
2472                // We explicitly say in docs that references are reversed.
2473                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2474                if found_duplicate {
2475                    // Increase `gap.read` now since the drop may panic.
2476                    gap.read += 1;
2477                    /* We have found duplicate, drop it in-place */
2478                    ptr::drop_in_place(read_ptr);
2479                } else {
2480                    let write_ptr = start.add(gap.write);
2481
2482                    /* read_ptr cannot be equal to write_ptr because at this point
2483                     * we guaranteed to skip at least one element (before loop starts).
2484                     */
2485                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2486
2487                    /* We have filled that place, so go further */
2488                    gap.write += 1;
2489                    gap.read += 1;
2490                }
2491            }
2492
2493            /* Technically we could let `gap` clean up with its Drop, but
2494             * when `same_bucket` is guaranteed to not panic, this bloats a little
2495             * the codegen, so we just do it manually */
2496            gap.vec.set_len(gap.write);
2497            mem::forget(gap);
2498        }
2499    }
2500
2501    /// Appends an element to the back of a collection.
2502    ///
2503    /// # Panics
2504    ///
2505    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2506    ///
2507    /// # Examples
2508    ///
2509    /// ```
2510    /// let mut vec = vec![1, 2];
2511    /// vec.push(3);
2512    /// assert_eq!(vec, [1, 2, 3]);
2513    /// ```
2514    ///
2515    /// # Time complexity
2516    ///
2517    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2518    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2519    /// vector's elements to a larger allocation. This expensive operation is
2520    /// offset by the *capacity* *O*(1) insertions it allows.
2521    #[cfg(not(no_global_oom_handling))]
2522    #[inline]
2523    #[stable(feature = "rust1", since = "1.0.0")]
2524    #[rustc_confusables("push_back", "put", "append")]
2525    pub fn push(&mut self, value: T) {
2526        let _ = self.push_mut(value);
2527    }
2528
2529    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2530    /// otherwise an error is returned with the element.
2531    ///
2532    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2533    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2534    ///
2535    /// [`push`]: Vec::push
2536    /// [`reserve`]: Vec::reserve
2537    /// [`try_reserve`]: Vec::try_reserve
2538    ///
2539    /// # Examples
2540    ///
2541    /// A manual, panic-free alternative to [`FromIterator`]:
2542    ///
2543    /// ```
2544    /// #![feature(vec_push_within_capacity)]
2545    ///
2546    /// use std::collections::TryReserveError;
2547    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2548    ///     let mut vec = Vec::new();
2549    ///     for value in iter {
2550    ///         if let Err(value) = vec.push_within_capacity(value) {
2551    ///             vec.try_reserve(1)?;
2552    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2553    ///             let _ = vec.push_within_capacity(value);
2554    ///         }
2555    ///     }
2556    ///     Ok(vec)
2557    /// }
2558    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2559    /// ```
2560    ///
2561    /// # Time complexity
2562    ///
2563    /// Takes *O*(1) time.
2564    #[inline]
2565    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2566    // #[unstable(feature = "push_mut", issue = "135974")]
2567    pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2568        if self.len == self.buf.capacity() {
2569            return Err(value);
2570        }
2571
2572        unsafe {
2573            let end = self.as_mut_ptr().add(self.len);
2574            ptr::write(end, value);
2575            self.len += 1;
2576
2577            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2578            Ok(&mut *end)
2579        }
2580    }
2581
2582    /// Appends an element to the back of a collection, returning a reference to it.
2583    ///
2584    /// # Panics
2585    ///
2586    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2587    ///
2588    /// # Examples
2589    ///
2590    /// ```
2591    /// #![feature(push_mut)]
2592    ///
2593    ///
2594    /// let mut vec = vec![1, 2];
2595    /// let last = vec.push_mut(3);
2596    /// assert_eq!(*last, 3);
2597    /// assert_eq!(vec, [1, 2, 3]);
2598    ///
2599    /// let last = vec.push_mut(3);
2600    /// *last += 1;
2601    /// assert_eq!(vec, [1, 2, 3, 4]);
2602    /// ```
2603    ///
2604    /// # Time complexity
2605    ///
2606    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2607    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2608    /// vector's elements to a larger allocation. This expensive operation is
2609    /// offset by the *capacity* *O*(1) insertions it allows.
2610    #[cfg(not(no_global_oom_handling))]
2611    #[inline]
2612    #[unstable(feature = "push_mut", issue = "135974")]
2613    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2614    pub fn push_mut(&mut self, value: T) -> &mut T {
2615        // Inform codegen that the length does not change across grow_one().
2616        let len = self.len;
2617        // This will panic or abort if we would allocate > isize::MAX bytes
2618        // or if the length increment would overflow for zero-sized types.
2619        if len == self.buf.capacity() {
2620            self.buf.grow_one();
2621        }
2622        unsafe {
2623            let end = self.as_mut_ptr().add(len);
2624            ptr::write(end, value);
2625            self.len = len + 1;
2626            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2627            &mut *end
2628        }
2629    }
2630
2631    /// Removes the last element from a vector and returns it, or [`None`] if it
2632    /// is empty.
2633    ///
2634    /// If you'd like to pop the first element, consider using
2635    /// [`VecDeque::pop_front`] instead.
2636    ///
2637    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2638    ///
2639    /// # Examples
2640    ///
2641    /// ```
2642    /// let mut vec = vec![1, 2, 3];
2643    /// assert_eq!(vec.pop(), Some(3));
2644    /// assert_eq!(vec, [1, 2]);
2645    /// ```
2646    ///
2647    /// # Time complexity
2648    ///
2649    /// Takes *O*(1) time.
2650    #[inline]
2651    #[stable(feature = "rust1", since = "1.0.0")]
2652    #[rustc_diagnostic_item = "vec_pop"]
2653    pub fn pop(&mut self) -> Option<T> {
2654        if self.len == 0 {
2655            None
2656        } else {
2657            unsafe {
2658                self.len -= 1;
2659                core::hint::assert_unchecked(self.len < self.capacity());
2660                Some(ptr::read(self.as_ptr().add(self.len())))
2661            }
2662        }
2663    }
2664
2665    /// Removes and returns the last element from a vector if the predicate
2666    /// returns `true`, or [`None`] if the predicate returns false or the vector
2667    /// is empty (the predicate will not be called in that case).
2668    ///
2669    /// # Examples
2670    ///
2671    /// ```
2672    /// let mut vec = vec![1, 2, 3, 4];
2673    /// let pred = |x: &mut i32| *x % 2 == 0;
2674    ///
2675    /// assert_eq!(vec.pop_if(pred), Some(4));
2676    /// assert_eq!(vec, [1, 2, 3]);
2677    /// assert_eq!(vec.pop_if(pred), None);
2678    /// ```
2679    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2680    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2681        let last = self.last_mut()?;
2682        if predicate(last) { self.pop() } else { None }
2683    }
2684
2685    /// Returns a mutable reference to the last item in the vector, or
2686    /// `None` if it is empty.
2687    ///
2688    /// # Examples
2689    ///
2690    /// Basic usage:
2691    ///
2692    /// ```
2693    /// #![feature(vec_peek_mut)]
2694    /// let mut vec = Vec::new();
2695    /// assert!(vec.peek_mut().is_none());
2696    ///
2697    /// vec.push(1);
2698    /// vec.push(5);
2699    /// vec.push(2);
2700    /// assert_eq!(vec.last(), Some(&2));
2701    /// if let Some(mut val) = vec.peek_mut() {
2702    ///     *val = 0;
2703    /// }
2704    /// assert_eq!(vec.last(), Some(&0));
2705    /// ```
2706    #[inline]
2707    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2708    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2709        PeekMut::new(self)
2710    }
2711
2712    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2713    ///
2714    /// # Panics
2715    ///
2716    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2717    ///
2718    /// # Examples
2719    ///
2720    /// ```
2721    /// let mut vec = vec![1, 2, 3];
2722    /// let mut vec2 = vec![4, 5, 6];
2723    /// vec.append(&mut vec2);
2724    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2725    /// assert_eq!(vec2, []);
2726    /// ```
2727    #[cfg(not(no_global_oom_handling))]
2728    #[inline]
2729    #[stable(feature = "append", since = "1.4.0")]
2730    pub fn append(&mut self, other: &mut Self) {
2731        unsafe {
2732            self.append_elements(other.as_slice() as _);
2733            other.set_len(0);
2734        }
2735    }
2736
2737    /// Appends elements to `self` from other buffer.
2738    #[cfg(not(no_global_oom_handling))]
2739    #[inline]
2740    unsafe fn append_elements(&mut self, other: *const [T]) {
2741        let count = other.len();
2742        self.reserve(count);
2743        let len = self.len();
2744        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2745        self.len += count;
2746    }
2747
2748    /// Removes the subslice indicated by the given range from the vector,
2749    /// returning a double-ended iterator over the removed subslice.
2750    ///
2751    /// If the iterator is dropped before being fully consumed,
2752    /// it drops the remaining removed elements.
2753    ///
2754    /// The returned iterator keeps a mutable borrow on the vector to optimize
2755    /// its implementation.
2756    ///
2757    /// # Panics
2758    ///
2759    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2760    /// bounded on either end and past the length of the vector.
2761    ///
2762    /// # Leaking
2763    ///
2764    /// If the returned iterator goes out of scope without being dropped (due to
2765    /// [`mem::forget`], for example), the vector may have lost and leaked
2766    /// elements arbitrarily, including elements outside the range.
2767    ///
2768    /// # Examples
2769    ///
2770    /// ```
2771    /// let mut v = vec![1, 2, 3];
2772    /// let u: Vec<_> = v.drain(1..).collect();
2773    /// assert_eq!(v, &[1]);
2774    /// assert_eq!(u, &[2, 3]);
2775    ///
2776    /// // A full range clears the vector, like `clear()` does
2777    /// v.drain(..);
2778    /// assert_eq!(v, &[]);
2779    /// ```
2780    #[stable(feature = "drain", since = "1.6.0")]
2781    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2782    where
2783        R: RangeBounds<usize>,
2784    {
2785        // Memory safety
2786        //
2787        // When the Drain is first created, it shortens the length of
2788        // the source vector to make sure no uninitialized or moved-from elements
2789        // are accessible at all if the Drain's destructor never gets to run.
2790        //
2791        // Drain will ptr::read out the values to remove.
2792        // When finished, remaining tail of the vec is copied back to cover
2793        // the hole, and the vector length is restored to the new length.
2794        //
2795        let len = self.len();
2796        let Range { start, end } = slice::range(range, ..len);
2797
2798        unsafe {
2799            // set self.vec length's to start, to be safe in case Drain is leaked
2800            self.set_len(start);
2801            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2802            Drain {
2803                tail_start: end,
2804                tail_len: len - end,
2805                iter: range_slice.iter(),
2806                vec: NonNull::from(self),
2807            }
2808        }
2809    }
2810
2811    /// Clears the vector, removing all values.
2812    ///
2813    /// Note that this method has no effect on the allocated capacity
2814    /// of the vector.
2815    ///
2816    /// # Examples
2817    ///
2818    /// ```
2819    /// let mut v = vec![1, 2, 3];
2820    ///
2821    /// v.clear();
2822    ///
2823    /// assert!(v.is_empty());
2824    /// ```
2825    #[inline]
2826    #[stable(feature = "rust1", since = "1.0.0")]
2827    pub fn clear(&mut self) {
2828        let elems: *mut [T] = self.as_mut_slice();
2829
2830        // SAFETY:
2831        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2832        // - Setting `self.len` before calling `drop_in_place` means that,
2833        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2834        //   do nothing (leaking the rest of the elements) instead of dropping
2835        //   some twice.
2836        unsafe {
2837            self.len = 0;
2838            ptr::drop_in_place(elems);
2839        }
2840    }
2841
2842    /// Returns the number of elements in the vector, also referred to
2843    /// as its 'length'.
2844    ///
2845    /// # Examples
2846    ///
2847    /// ```
2848    /// let a = vec![1, 2, 3];
2849    /// assert_eq!(a.len(), 3);
2850    /// ```
2851    #[inline]
2852    #[stable(feature = "rust1", since = "1.0.0")]
2853    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2854    #[rustc_confusables("length", "size")]
2855    pub const fn len(&self) -> usize {
2856        let len = self.len;
2857
2858        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2859        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2860        // matches the definition of `T::MAX_SLICE_LEN`.
2861        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2862
2863        len
2864    }
2865
2866    /// Returns `true` if the vector contains no elements.
2867    ///
2868    /// # Examples
2869    ///
2870    /// ```
2871    /// let mut v = Vec::new();
2872    /// assert!(v.is_empty());
2873    ///
2874    /// v.push(1);
2875    /// assert!(!v.is_empty());
2876    /// ```
2877    #[stable(feature = "rust1", since = "1.0.0")]
2878    #[rustc_diagnostic_item = "vec_is_empty"]
2879    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2880    pub const fn is_empty(&self) -> bool {
2881        self.len() == 0
2882    }
2883
2884    /// Splits the collection into two at the given index.
2885    ///
2886    /// Returns a newly allocated vector containing the elements in the range
2887    /// `[at, len)`. After the call, the original vector will be left containing
2888    /// the elements `[0, at)` with its previous capacity unchanged.
2889    ///
2890    /// - If you want to take ownership of the entire contents and capacity of
2891    ///   the vector, see [`mem::take`] or [`mem::replace`].
2892    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2893    /// - If you want to take ownership of an arbitrary subslice, or you don't
2894    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2895    ///
2896    /// # Panics
2897    ///
2898    /// Panics if `at > len`.
2899    ///
2900    /// # Examples
2901    ///
2902    /// ```
2903    /// let mut vec = vec!['a', 'b', 'c'];
2904    /// let vec2 = vec.split_off(1);
2905    /// assert_eq!(vec, ['a']);
2906    /// assert_eq!(vec2, ['b', 'c']);
2907    /// ```
2908    #[cfg(not(no_global_oom_handling))]
2909    #[inline]
2910    #[must_use = "use `.truncate()` if you don't need the other half"]
2911    #[stable(feature = "split_off", since = "1.4.0")]
2912    #[track_caller]
2913    pub fn split_off(&mut self, at: usize) -> Self
2914    where
2915        A: Clone,
2916    {
2917        #[cold]
2918        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2919        #[track_caller]
2920        #[optimize(size)]
2921        fn assert_failed(at: usize, len: usize) -> ! {
2922            panic!("`at` split index (is {at}) should be <= len (is {len})");
2923        }
2924
2925        if at > self.len() {
2926            assert_failed(at, self.len());
2927        }
2928
2929        let other_len = self.len - at;
2930        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2931
2932        // Unsafely `set_len` and copy items to `other`.
2933        unsafe {
2934            self.set_len(at);
2935            other.set_len(other_len);
2936
2937            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2938        }
2939        other
2940    }
2941
2942    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2943    ///
2944    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2945    /// difference, with each additional slot filled with the result of
2946    /// calling the closure `f`. The return values from `f` will end up
2947    /// in the `Vec` in the order they have been generated.
2948    ///
2949    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2950    ///
2951    /// This method uses a closure to create new values on every push. If
2952    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2953    /// want to use the [`Default`] trait to generate values, you can
2954    /// pass [`Default::default`] as the second argument.
2955    ///
2956    /// # Panics
2957    ///
2958    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2959    ///
2960    /// # Examples
2961    ///
2962    /// ```
2963    /// let mut vec = vec![1, 2, 3];
2964    /// vec.resize_with(5, Default::default);
2965    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2966    ///
2967    /// let mut vec = vec![];
2968    /// let mut p = 1;
2969    /// vec.resize_with(4, || { p *= 2; p });
2970    /// assert_eq!(vec, [2, 4, 8, 16]);
2971    /// ```
2972    #[cfg(not(no_global_oom_handling))]
2973    #[stable(feature = "vec_resize_with", since = "1.33.0")]
2974    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2975    where
2976        F: FnMut() -> T,
2977    {
2978        let len = self.len();
2979        if new_len > len {
2980            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2981        } else {
2982            self.truncate(new_len);
2983        }
2984    }
2985
2986    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2987    /// `&'a mut [T]`.
2988    ///
2989    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
2990    /// has only static references, or none at all, then this may be chosen to be
2991    /// `'static`.
2992    ///
2993    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2994    /// so the leaked allocation may include unused capacity that is not part
2995    /// of the returned slice.
2996    ///
2997    /// This function is mainly useful for data that lives for the remainder of
2998    /// the program's life. Dropping the returned reference will cause a memory
2999    /// leak.
3000    ///
3001    /// # Examples
3002    ///
3003    /// Simple usage:
3004    ///
3005    /// ```
3006    /// let x = vec![1, 2, 3];
3007    /// let static_ref: &'static mut [usize] = x.leak();
3008    /// static_ref[0] += 1;
3009    /// assert_eq!(static_ref, &[2, 2, 3]);
3010    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3011    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3012    /// # drop(unsafe { Box::from_raw(static_ref) });
3013    /// ```
3014    #[stable(feature = "vec_leak", since = "1.47.0")]
3015    #[inline]
3016    pub fn leak<'a>(self) -> &'a mut [T]
3017    where
3018        A: 'a,
3019    {
3020        let mut me = ManuallyDrop::new(self);
3021        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3022    }
3023
3024    /// Returns the remaining spare capacity of the vector as a slice of
3025    /// `MaybeUninit<T>`.
3026    ///
3027    /// The returned slice can be used to fill the vector with data (e.g. by
3028    /// reading from a file) before marking the data as initialized using the
3029    /// [`set_len`] method.
3030    ///
3031    /// [`set_len`]: Vec::set_len
3032    ///
3033    /// # Examples
3034    ///
3035    /// ```
3036    /// // Allocate vector big enough for 10 elements.
3037    /// let mut v = Vec::with_capacity(10);
3038    ///
3039    /// // Fill in the first 3 elements.
3040    /// let uninit = v.spare_capacity_mut();
3041    /// uninit[0].write(0);
3042    /// uninit[1].write(1);
3043    /// uninit[2].write(2);
3044    ///
3045    /// // Mark the first 3 elements of the vector as being initialized.
3046    /// unsafe {
3047    ///     v.set_len(3);
3048    /// }
3049    ///
3050    /// assert_eq!(&v, &[0, 1, 2]);
3051    /// ```
3052    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3053    #[inline]
3054    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3055        // Note:
3056        // This method is not implemented in terms of `split_at_spare_mut`,
3057        // to prevent invalidation of pointers to the buffer.
3058        unsafe {
3059            slice::from_raw_parts_mut(
3060                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3061                self.buf.capacity() - self.len,
3062            )
3063        }
3064    }
3065
3066    /// Returns vector content as a slice of `T`, along with the remaining spare
3067    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3068    ///
3069    /// The returned spare capacity slice can be used to fill the vector with data
3070    /// (e.g. by reading from a file) before marking the data as initialized using
3071    /// the [`set_len`] method.
3072    ///
3073    /// [`set_len`]: Vec::set_len
3074    ///
3075    /// Note that this is a low-level API, which should be used with care for
3076    /// optimization purposes. If you need to append data to a `Vec`
3077    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3078    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3079    /// [`resize_with`], depending on your exact needs.
3080    ///
3081    /// [`push`]: Vec::push
3082    /// [`extend`]: Vec::extend
3083    /// [`extend_from_slice`]: Vec::extend_from_slice
3084    /// [`extend_from_within`]: Vec::extend_from_within
3085    /// [`insert`]: Vec::insert
3086    /// [`append`]: Vec::append
3087    /// [`resize`]: Vec::resize
3088    /// [`resize_with`]: Vec::resize_with
3089    ///
3090    /// # Examples
3091    ///
3092    /// ```
3093    /// #![feature(vec_split_at_spare)]
3094    ///
3095    /// let mut v = vec![1, 1, 2];
3096    ///
3097    /// // Reserve additional space big enough for 10 elements.
3098    /// v.reserve(10);
3099    ///
3100    /// let (init, uninit) = v.split_at_spare_mut();
3101    /// let sum = init.iter().copied().sum::<u32>();
3102    ///
3103    /// // Fill in the next 4 elements.
3104    /// uninit[0].write(sum);
3105    /// uninit[1].write(sum * 2);
3106    /// uninit[2].write(sum * 3);
3107    /// uninit[3].write(sum * 4);
3108    ///
3109    /// // Mark the 4 elements of the vector as being initialized.
3110    /// unsafe {
3111    ///     let len = v.len();
3112    ///     v.set_len(len + 4);
3113    /// }
3114    ///
3115    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3116    /// ```
3117    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3118    #[inline]
3119    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3120        // SAFETY:
3121        // - len is ignored and so never changed
3122        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3123        (init, spare)
3124    }
3125
3126    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3127    ///
3128    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3129    unsafe fn split_at_spare_mut_with_len(
3130        &mut self,
3131    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3132        let ptr = self.as_mut_ptr();
3133        // SAFETY:
3134        // - `ptr` is guaranteed to be valid for `self.len` elements
3135        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3136        // uninitialized
3137        let spare_ptr = unsafe { ptr.add(self.len) };
3138        let spare_ptr = spare_ptr.cast_uninit();
3139        let spare_len = self.buf.capacity() - self.len;
3140
3141        // SAFETY:
3142        // - `ptr` is guaranteed to be valid for `self.len` elements
3143        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3144        unsafe {
3145            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3146            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3147
3148            (initialized, spare, &mut self.len)
3149        }
3150    }
3151
3152    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3153    /// elements in the remainder. `N` must be greater than zero.
3154    ///
3155    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3156    /// nearest multiple with a reallocation or deallocation.
3157    ///
3158    /// This function can be used to reverse [`Vec::into_flattened`].
3159    ///
3160    /// # Examples
3161    ///
3162    /// ```
3163    /// #![feature(vec_into_chunks)]
3164    ///
3165    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3166    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3167    ///
3168    /// let vec = vec![0, 1, 2, 3];
3169    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3170    /// assert!(chunks.is_empty());
3171    ///
3172    /// let flat = vec![0; 8 * 8 * 8];
3173    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3174    /// assert_eq!(reshaped.len(), 1);
3175    /// ```
3176    #[cfg(not(no_global_oom_handling))]
3177    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3178    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3179        const {
3180            assert!(N != 0, "chunk size must be greater than zero");
3181        }
3182
3183        let (len, cap) = (self.len(), self.capacity());
3184
3185        let len_remainder = len % N;
3186        if len_remainder != 0 {
3187            self.truncate(len - len_remainder);
3188        }
3189
3190        let cap_remainder = cap % N;
3191        if !T::IS_ZST && cap_remainder != 0 {
3192            self.buf.shrink_to_fit(cap - cap_remainder);
3193        }
3194
3195        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3196
3197        // SAFETY:
3198        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3199        // - `[T; N]` has the same alignment as `T`
3200        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3201        // - `len / N <= cap / N` because `len <= cap`
3202        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3203        // - `cap / N` fits the size of the allocated memory after shrinking
3204        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3205    }
3206
3207    /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3208    /// The item type of the resulting `Vec` needs to have the same size and
3209    /// alignment as the item type of the original `Vec`.
3210    ///
3211    /// # Examples
3212    ///
3213    ///  ```
3214    /// #![feature(vec_recycle, transmutability)]
3215    /// let a: Vec<u8> = vec![0; 100];
3216    /// let capacity = a.capacity();
3217    /// let addr = a.as_ptr().addr();
3218    /// let b: Vec<i8> = a.recycle();
3219    /// assert_eq!(b.len(), 0);
3220    /// assert_eq!(b.capacity(), capacity);
3221    /// assert_eq!(b.as_ptr().addr(), addr);
3222    /// ```
3223    ///
3224    /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3225    ///
3226    ///  ```compile_fail,E0277
3227    /// #![feature(vec_recycle, transmutability)]
3228    /// let vec: Vec<[u8; 2]> = Vec::new();
3229    /// let _: Vec<[u8; 1]> = vec.recycle();
3230    /// ```
3231    /// ...or different alignments:
3232    ///
3233    ///  ```compile_fail,E0277
3234    /// #![feature(vec_recycle, transmutability)]
3235    /// let vec: Vec<[u16; 0]> = Vec::new();
3236    /// let _: Vec<[u8; 0]> = vec.recycle();
3237    /// ```
3238    ///
3239    /// However, due to temporary implementation limitations of `Recyclable`,
3240    /// this method is not yet callable when `T` or `U` are slices, trait objects,
3241    /// or other exotic types; e.g.:
3242    ///
3243    /// ```compile_fail,E0277
3244    /// #![feature(vec_recycle, transmutability)]
3245    /// # let inputs = ["a b c", "d e f"];
3246    /// # fn process(_: &[&str]) {}
3247    /// let mut storage: Vec<&[&str]> = Vec::new();
3248    ///
3249    /// for input in inputs {
3250    ///     let mut buffer: Vec<&str> = storage.recycle();
3251    ///     buffer.extend(input.split(" "));
3252    ///     process(&buffer);
3253    ///     storage = buffer.recycle();
3254    /// }
3255    /// ```
3256    #[unstable(feature = "vec_recycle", issue = "148227")]
3257    #[expect(private_bounds)]
3258    pub fn recycle<U>(mut self) -> Vec<U, A>
3259    where
3260        U: Recyclable<T>,
3261    {
3262        self.clear();
3263        const {
3264            // FIXME(const-hack, 146097): compare `Layout`s
3265            assert!(size_of::<T>() == size_of::<U>());
3266            assert!(align_of::<T>() == align_of::<U>());
3267        };
3268        let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3269        debug_assert_eq!(length, 0);
3270        // SAFETY:
3271        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3272        // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3273        // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3274        unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3275    }
3276}
3277
3278/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3279///
3280/// # Safety
3281///
3282/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3283unsafe trait Recyclable<From: Sized>: Sized {}
3284
3285#[unstable_feature_bound(transmutability)]
3286// SAFETY: enforced by `TransmuteFrom`
3287unsafe impl<From, To> Recyclable<From> for To
3288where
3289    for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3290    for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3291{
3292}
3293
3294impl<T: Clone, A: Allocator> Vec<T, A> {
3295    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3296    ///
3297    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3298    /// difference, with each additional slot filled with `value`.
3299    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3300    ///
3301    /// This method requires `T` to implement [`Clone`],
3302    /// in order to be able to clone the passed value.
3303    /// If you need more flexibility (or want to rely on [`Default`] instead of
3304    /// [`Clone`]), use [`Vec::resize_with`].
3305    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3306    ///
3307    /// # Panics
3308    ///
3309    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3310    ///
3311    /// # Examples
3312    ///
3313    /// ```
3314    /// let mut vec = vec!["hello"];
3315    /// vec.resize(3, "world");
3316    /// assert_eq!(vec, ["hello", "world", "world"]);
3317    ///
3318    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3319    /// vec.resize(2, '_');
3320    /// assert_eq!(vec, ['a', 'b']);
3321    /// ```
3322    #[cfg(not(no_global_oom_handling))]
3323    #[stable(feature = "vec_resize", since = "1.5.0")]
3324    pub fn resize(&mut self, new_len: usize, value: T) {
3325        let len = self.len();
3326
3327        if new_len > len {
3328            self.extend_with(new_len - len, value)
3329        } else {
3330            self.truncate(new_len);
3331        }
3332    }
3333
3334    /// Clones and appends all elements in a slice to the `Vec`.
3335    ///
3336    /// Iterates over the slice `other`, clones each element, and then appends
3337    /// it to this `Vec`. The `other` slice is traversed in-order.
3338    ///
3339    /// Note that this function is the same as [`extend`],
3340    /// except that it also works with slice elements that are Clone but not Copy.
3341    /// If Rust gets specialization this function may be deprecated.
3342    ///
3343    /// # Examples
3344    ///
3345    /// ```
3346    /// let mut vec = vec![1];
3347    /// vec.extend_from_slice(&[2, 3, 4]);
3348    /// assert_eq!(vec, [1, 2, 3, 4]);
3349    /// ```
3350    ///
3351    /// [`extend`]: Vec::extend
3352    #[cfg(not(no_global_oom_handling))]
3353    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3354    pub fn extend_from_slice(&mut self, other: &[T]) {
3355        self.spec_extend(other.iter())
3356    }
3357
3358    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3359    ///
3360    /// `src` must be a range that can form a valid subslice of the `Vec`.
3361    ///
3362    /// # Panics
3363    ///
3364    /// Panics if starting index is greater than the end index
3365    /// or if the index is greater than the length of the vector.
3366    ///
3367    /// # Examples
3368    ///
3369    /// ```
3370    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3371    /// characters.extend_from_within(2..);
3372    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3373    ///
3374    /// let mut numbers = vec![0, 1, 2, 3, 4];
3375    /// numbers.extend_from_within(..2);
3376    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3377    ///
3378    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3379    /// strings.extend_from_within(1..=2);
3380    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3381    /// ```
3382    #[cfg(not(no_global_oom_handling))]
3383    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3384    pub fn extend_from_within<R>(&mut self, src: R)
3385    where
3386        R: RangeBounds<usize>,
3387    {
3388        let range = slice::range(src, ..self.len());
3389        self.reserve(range.len());
3390
3391        // SAFETY:
3392        // - `slice::range` guarantees that the given range is valid for indexing self
3393        unsafe {
3394            self.spec_extend_from_within(range);
3395        }
3396    }
3397}
3398
3399impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3400    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3401    ///
3402    /// # Panics
3403    ///
3404    /// Panics if the length of the resulting vector would overflow a `usize`.
3405    ///
3406    /// This is only possible when flattening a vector of arrays of zero-sized
3407    /// types, and thus tends to be irrelevant in practice. If
3408    /// `size_of::<T>() > 0`, this will never panic.
3409    ///
3410    /// # Examples
3411    ///
3412    /// ```
3413    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3414    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3415    ///
3416    /// let mut flattened = vec.into_flattened();
3417    /// assert_eq!(flattened.pop(), Some(6));
3418    /// ```
3419    #[stable(feature = "slice_flatten", since = "1.80.0")]
3420    pub fn into_flattened(self) -> Vec<T, A> {
3421        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3422        let (new_len, new_cap) = if T::IS_ZST {
3423            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3424        } else {
3425            // SAFETY:
3426            // - `cap * N` cannot overflow because the allocation is already in
3427            // the address space.
3428            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3429            // valid elements in the allocation.
3430            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3431        };
3432        // SAFETY:
3433        // - `ptr` was allocated by `self`
3434        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3435        // - `new_cap` refers to the same sized allocation as `cap` because
3436        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3437        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3438        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3439    }
3440}
3441
3442impl<T: Clone, A: Allocator> Vec<T, A> {
3443    #[cfg(not(no_global_oom_handling))]
3444    /// Extend the vector by `n` clones of value.
3445    fn extend_with(&mut self, n: usize, value: T) {
3446        self.reserve(n);
3447
3448        unsafe {
3449            let mut ptr = self.as_mut_ptr().add(self.len());
3450            // Use SetLenOnDrop to work around bug where compiler
3451            // might not realize the store through `ptr` through self.set_len()
3452            // don't alias.
3453            let mut local_len = SetLenOnDrop::new(&mut self.len);
3454
3455            // Write all elements except the last one
3456            for _ in 1..n {
3457                ptr::write(ptr, value.clone());
3458                ptr = ptr.add(1);
3459                // Increment the length in every step in case clone() panics
3460                local_len.increment_len(1);
3461            }
3462
3463            if n > 0 {
3464                // We can write the last element directly without cloning needlessly
3465                ptr::write(ptr, value);
3466                local_len.increment_len(1);
3467            }
3468
3469            // len set by scope guard
3470        }
3471    }
3472}
3473
3474impl<T: PartialEq, A: Allocator> Vec<T, A> {
3475    /// Removes consecutive repeated elements in the vector according to the
3476    /// [`PartialEq`] trait implementation.
3477    ///
3478    /// If the vector is sorted, this removes all duplicates.
3479    ///
3480    /// # Examples
3481    ///
3482    /// ```
3483    /// let mut vec = vec![1, 2, 2, 3, 2];
3484    ///
3485    /// vec.dedup();
3486    ///
3487    /// assert_eq!(vec, [1, 2, 3, 2]);
3488    /// ```
3489    #[stable(feature = "rust1", since = "1.0.0")]
3490    #[inline]
3491    pub fn dedup(&mut self) {
3492        self.dedup_by(|a, b| a == b)
3493    }
3494}
3495
3496////////////////////////////////////////////////////////////////////////////////
3497// Internal methods and functions
3498////////////////////////////////////////////////////////////////////////////////
3499
3500#[doc(hidden)]
3501#[cfg(not(no_global_oom_handling))]
3502#[stable(feature = "rust1", since = "1.0.0")]
3503#[rustc_diagnostic_item = "vec_from_elem"]
3504pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3505    <T as SpecFromElem>::from_elem(elem, n, Global)
3506}
3507
3508#[doc(hidden)]
3509#[cfg(not(no_global_oom_handling))]
3510#[unstable(feature = "allocator_api", issue = "32838")]
3511pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3512    <T as SpecFromElem>::from_elem(elem, n, alloc)
3513}
3514
3515#[cfg(not(no_global_oom_handling))]
3516trait ExtendFromWithinSpec {
3517    /// # Safety
3518    ///
3519    /// - `src` needs to be valid index
3520    /// - `self.capacity() - self.len()` must be `>= src.len()`
3521    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3522}
3523
3524#[cfg(not(no_global_oom_handling))]
3525impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3526    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3527        // SAFETY:
3528        // - len is increased only after initializing elements
3529        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3530
3531        // SAFETY:
3532        // - caller guarantees that src is a valid index
3533        let to_clone = unsafe { this.get_unchecked(src) };
3534
3535        iter::zip(to_clone, spare)
3536            .map(|(src, dst)| dst.write(src.clone()))
3537            // Note:
3538            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3539            // - len is increased after each element to prevent leaks (see issue #82533)
3540            .for_each(|_| *len += 1);
3541    }
3542}
3543
3544#[cfg(not(no_global_oom_handling))]
3545impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3546    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3547        let count = src.len();
3548        {
3549            let (init, spare) = self.split_at_spare_mut();
3550
3551            // SAFETY:
3552            // - caller guarantees that `src` is a valid index
3553            let source = unsafe { init.get_unchecked(src) };
3554
3555            // SAFETY:
3556            // - Both pointers are created from unique slice references (`&mut [_]`)
3557            //   so they are valid and do not overlap.
3558            // - Elements implement `TrivialClone` so this is equivalent to calling
3559            //   `clone` on every one of them.
3560            // - `count` is equal to the len of `source`, so source is valid for
3561            //   `count` reads
3562            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3563            //   is valid for `count` writes
3564            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3565        }
3566
3567        // SAFETY:
3568        // - The elements were just initialized by `copy_nonoverlapping`
3569        self.len += count;
3570    }
3571}
3572
3573////////////////////////////////////////////////////////////////////////////////
3574// Common trait implementations for Vec
3575////////////////////////////////////////////////////////////////////////////////
3576
3577#[stable(feature = "rust1", since = "1.0.0")]
3578impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3579    type Target = [T];
3580
3581    #[inline]
3582    fn deref(&self) -> &[T] {
3583        self.as_slice()
3584    }
3585}
3586
3587#[stable(feature = "rust1", since = "1.0.0")]
3588impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3589    #[inline]
3590    fn deref_mut(&mut self) -> &mut [T] {
3591        self.as_mut_slice()
3592    }
3593}
3594
3595#[unstable(feature = "deref_pure_trait", issue = "87121")]
3596unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3597
3598#[cfg(not(no_global_oom_handling))]
3599#[stable(feature = "rust1", since = "1.0.0")]
3600impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3601    fn clone(&self) -> Self {
3602        let alloc = self.allocator().clone();
3603        <[T]>::to_vec_in(&**self, alloc)
3604    }
3605
3606    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3607    ///
3608    /// This method is preferred over simply assigning `source.clone()` to `self`,
3609    /// as it avoids reallocation if possible. Additionally, if the element type
3610    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3611    /// elements as well.
3612    ///
3613    /// # Examples
3614    ///
3615    /// ```
3616    /// let x = vec![5, 6, 7];
3617    /// let mut y = vec![8, 9, 10];
3618    /// let yp: *const i32 = y.as_ptr();
3619    ///
3620    /// y.clone_from(&x);
3621    ///
3622    /// // The value is the same
3623    /// assert_eq!(x, y);
3624    ///
3625    /// // And no reallocation occurred
3626    /// assert_eq!(yp, y.as_ptr());
3627    /// ```
3628    fn clone_from(&mut self, source: &Self) {
3629        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3630    }
3631}
3632
3633/// The hash of a vector is the same as that of the corresponding slice,
3634/// as required by the `core::borrow::Borrow` implementation.
3635///
3636/// ```
3637/// use std::hash::BuildHasher;
3638///
3639/// let b = std::hash::RandomState::new();
3640/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3641/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3642/// assert_eq!(b.hash_one(v), b.hash_one(s));
3643/// ```
3644#[stable(feature = "rust1", since = "1.0.0")]
3645impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3646    #[inline]
3647    fn hash<H: Hasher>(&self, state: &mut H) {
3648        Hash::hash(&**self, state)
3649    }
3650}
3651
3652#[stable(feature = "rust1", since = "1.0.0")]
3653impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3654    type Output = I::Output;
3655
3656    #[inline]
3657    fn index(&self, index: I) -> &Self::Output {
3658        Index::index(&**self, index)
3659    }
3660}
3661
3662#[stable(feature = "rust1", since = "1.0.0")]
3663impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3664    #[inline]
3665    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3666        IndexMut::index_mut(&mut **self, index)
3667    }
3668}
3669
3670/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3671///
3672/// # Allocation behavior
3673///
3674/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3675/// That also applies to this trait impl.
3676///
3677/// **Note:** This section covers implementation details and is therefore exempt from
3678/// stability guarantees.
3679///
3680/// Vec may use any or none of the following strategies,
3681/// depending on the supplied iterator:
3682///
3683/// * preallocate based on [`Iterator::size_hint()`]
3684///   * and panic if the number of items is outside the provided lower/upper bounds
3685/// * use an amortized growth strategy similar to `pushing` one item at a time
3686/// * perform the iteration in-place on the original allocation backing the iterator
3687///
3688/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3689/// consumption and improves cache locality. But when big, short-lived allocations are created,
3690/// only a small fraction of their items get collected, no further use is made of the spare capacity
3691/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3692/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3693/// footprint.
3694///
3695/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3696/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3697/// the size of the long-lived struct.
3698///
3699/// [owned slice]: Box
3700///
3701/// ```rust
3702/// # use std::sync::Mutex;
3703/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3704///
3705/// for i in 0..10 {
3706///     let big_temporary: Vec<u16> = (0..1024).collect();
3707///     // discard most items
3708///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3709///     // without this a lot of unused capacity might be moved into the global
3710///     result.shrink_to_fit();
3711///     LONG_LIVED.lock().unwrap().push(result);
3712/// }
3713/// ```
3714#[cfg(not(no_global_oom_handling))]
3715#[stable(feature = "rust1", since = "1.0.0")]
3716impl<T> FromIterator<T> for Vec<T> {
3717    #[inline]
3718    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3719        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3720    }
3721}
3722
3723#[stable(feature = "rust1", since = "1.0.0")]
3724impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3725    type Item = T;
3726    type IntoIter = IntoIter<T, A>;
3727
3728    /// Creates a consuming iterator, that is, one that moves each value out of
3729    /// the vector (from start to end). The vector cannot be used after calling
3730    /// this.
3731    ///
3732    /// # Examples
3733    ///
3734    /// ```
3735    /// let v = vec!["a".to_string(), "b".to_string()];
3736    /// let mut v_iter = v.into_iter();
3737    ///
3738    /// let first_element: Option<String> = v_iter.next();
3739    ///
3740    /// assert_eq!(first_element, Some("a".to_string()));
3741    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3742    /// assert_eq!(v_iter.next(), None);
3743    /// ```
3744    #[inline]
3745    fn into_iter(self) -> Self::IntoIter {
3746        unsafe {
3747            let me = ManuallyDrop::new(self);
3748            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3749            let buf = me.buf.non_null();
3750            let begin = buf.as_ptr();
3751            let end = if T::IS_ZST {
3752                begin.wrapping_byte_add(me.len())
3753            } else {
3754                begin.add(me.len()) as *const T
3755            };
3756            let cap = me.buf.capacity();
3757            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3758        }
3759    }
3760}
3761
3762#[stable(feature = "rust1", since = "1.0.0")]
3763impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3764    type Item = &'a T;
3765    type IntoIter = slice::Iter<'a, T>;
3766
3767    fn into_iter(self) -> Self::IntoIter {
3768        self.iter()
3769    }
3770}
3771
3772#[stable(feature = "rust1", since = "1.0.0")]
3773impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3774    type Item = &'a mut T;
3775    type IntoIter = slice::IterMut<'a, T>;
3776
3777    fn into_iter(self) -> Self::IntoIter {
3778        self.iter_mut()
3779    }
3780}
3781
3782#[cfg(not(no_global_oom_handling))]
3783#[stable(feature = "rust1", since = "1.0.0")]
3784impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3785    #[inline]
3786    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3787        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3788    }
3789
3790    #[inline]
3791    fn extend_one(&mut self, item: T) {
3792        self.push(item);
3793    }
3794
3795    #[inline]
3796    fn extend_reserve(&mut self, additional: usize) {
3797        self.reserve(additional);
3798    }
3799
3800    #[inline]
3801    unsafe fn extend_one_unchecked(&mut self, item: T) {
3802        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3803        unsafe {
3804            let len = self.len();
3805            ptr::write(self.as_mut_ptr().add(len), item);
3806            self.set_len(len + 1);
3807        }
3808    }
3809}
3810
3811impl<T, A: Allocator> Vec<T, A> {
3812    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3813    // they have no further optimizations to apply
3814    #[cfg(not(no_global_oom_handling))]
3815    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3816        // This is the case for a general iterator.
3817        //
3818        // This function should be the moral equivalent of:
3819        //
3820        //      for item in iterator {
3821        //          self.push(item);
3822        //      }
3823        while let Some(element) = iterator.next() {
3824            let len = self.len();
3825            if len == self.capacity() {
3826                let (lower, _) = iterator.size_hint();
3827                self.reserve(lower.saturating_add(1));
3828            }
3829            unsafe {
3830                ptr::write(self.as_mut_ptr().add(len), element);
3831                // Since next() executes user code which can panic we have to bump the length
3832                // after each step.
3833                // NB can't overflow since we would have had to alloc the address space
3834                self.set_len(len + 1);
3835            }
3836        }
3837    }
3838
3839    // specific extend for `TrustedLen` iterators, called both by the specializations
3840    // and internal places where resolving specialization makes compilation slower
3841    #[cfg(not(no_global_oom_handling))]
3842    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3843        let (low, high) = iterator.size_hint();
3844        if let Some(additional) = high {
3845            debug_assert_eq!(
3846                low,
3847                additional,
3848                "TrustedLen iterator's size hint is not exact: {:?}",
3849                (low, high)
3850            );
3851            self.reserve(additional);
3852            unsafe {
3853                let ptr = self.as_mut_ptr();
3854                let mut local_len = SetLenOnDrop::new(&mut self.len);
3855                iterator.for_each(move |element| {
3856                    ptr::write(ptr.add(local_len.current_len()), element);
3857                    // Since the loop executes user code which can panic we have to update
3858                    // the length every step to correctly drop what we've written.
3859                    // NB can't overflow since we would have had to alloc the address space
3860                    local_len.increment_len(1);
3861                });
3862            }
3863        } else {
3864            // Per TrustedLen contract a `None` upper bound means that the iterator length
3865            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3866            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3867            // This avoids additional codegen for a fallback code path which would eventually
3868            // panic anyway.
3869            panic!("capacity overflow");
3870        }
3871    }
3872
3873    /// Creates a splicing iterator that replaces the specified range in the vector
3874    /// with the given `replace_with` iterator and yields the removed items.
3875    /// `replace_with` does not need to be the same length as `range`.
3876    ///
3877    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3878    ///
3879    /// It is unspecified how many elements are removed from the vector
3880    /// if the `Splice` value is leaked.
3881    ///
3882    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3883    ///
3884    /// This is optimal if:
3885    ///
3886    /// * The tail (elements in the vector after `range`) is empty,
3887    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3888    /// * or the lower bound of its `size_hint()` is exact.
3889    ///
3890    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3891    ///
3892    /// # Panics
3893    ///
3894    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3895    /// bounded on either end and past the length of the vector.
3896    ///
3897    /// # Examples
3898    ///
3899    /// ```
3900    /// let mut v = vec![1, 2, 3, 4];
3901    /// let new = [7, 8, 9];
3902    /// let u: Vec<_> = v.splice(1..3, new).collect();
3903    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3904    /// assert_eq!(u, [2, 3]);
3905    /// ```
3906    ///
3907    /// Using `splice` to insert new items into a vector efficiently at a specific position
3908    /// indicated by an empty range:
3909    ///
3910    /// ```
3911    /// let mut v = vec![1, 5];
3912    /// let new = [2, 3, 4];
3913    /// v.splice(1..1, new);
3914    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3915    /// ```
3916    #[cfg(not(no_global_oom_handling))]
3917    #[inline]
3918    #[stable(feature = "vec_splice", since = "1.21.0")]
3919    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3920    where
3921        R: RangeBounds<usize>,
3922        I: IntoIterator<Item = T>,
3923    {
3924        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3925    }
3926
3927    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3928    ///
3929    /// If the closure returns `true`, the element is removed from the vector
3930    /// and yielded. If the closure returns `false`, or panics, the element
3931    /// remains in the vector and will not be yielded.
3932    ///
3933    /// Only elements that fall in the provided range are considered for extraction, but any elements
3934    /// after the range will still have to be moved if any element has been extracted.
3935    ///
3936    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3937    /// or the iteration short-circuits, then the remaining elements will be retained.
3938    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
3939    /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
3940    ///
3941    /// [`retain_mut`]: Vec::retain_mut
3942    ///
3943    /// Using this method is equivalent to the following code:
3944    ///
3945    /// ```
3946    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
3947    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
3948    /// # let mut vec2 = vec.clone();
3949    /// # let range = 1..5;
3950    /// let mut i = range.start;
3951    /// let end_items = vec.len() - range.end;
3952    /// # let mut extracted = vec![];
3953    ///
3954    /// while i < vec.len() - end_items {
3955    ///     if some_predicate(&mut vec[i]) {
3956    ///         let val = vec.remove(i);
3957    ///         // your code here
3958    /// #         extracted.push(val);
3959    ///     } else {
3960    ///         i += 1;
3961    ///     }
3962    /// }
3963    ///
3964    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
3965    /// # assert_eq!(vec, vec2);
3966    /// # assert_eq!(extracted, extracted2);
3967    /// ```
3968    ///
3969    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3970    /// because it can backshift the elements of the array in bulk.
3971    ///
3972    /// The iterator also lets you mutate the value of each element in the
3973    /// closure, regardless of whether you choose to keep or remove it.
3974    ///
3975    /// # Panics
3976    ///
3977    /// If `range` is out of bounds.
3978    ///
3979    /// # Examples
3980    ///
3981    /// Splitting a vector into even and odd values, reusing the original vector:
3982    ///
3983    /// ```
3984    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3985    ///
3986    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3987    /// let odds = numbers;
3988    ///
3989    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3990    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3991    /// ```
3992    ///
3993    /// Using the range argument to only process a part of the vector:
3994    ///
3995    /// ```
3996    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3997    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3998    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3999    /// assert_eq!(ones.len(), 3);
4000    /// ```
4001    #[stable(feature = "extract_if", since = "1.87.0")]
4002    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4003    where
4004        F: FnMut(&mut T) -> bool,
4005        R: RangeBounds<usize>,
4006    {
4007        ExtractIf::new(self, filter, range)
4008    }
4009}
4010
4011/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4012///
4013/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4014/// append the entire slice at once.
4015///
4016/// [`copy_from_slice`]: slice::copy_from_slice
4017#[cfg(not(no_global_oom_handling))]
4018#[stable(feature = "extend_ref", since = "1.2.0")]
4019impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4020    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4021        self.spec_extend(iter.into_iter())
4022    }
4023
4024    #[inline]
4025    fn extend_one(&mut self, &item: &'a T) {
4026        self.push(item);
4027    }
4028
4029    #[inline]
4030    fn extend_reserve(&mut self, additional: usize) {
4031        self.reserve(additional);
4032    }
4033
4034    #[inline]
4035    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4036        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4037        unsafe {
4038            let len = self.len();
4039            ptr::write(self.as_mut_ptr().add(len), item);
4040            self.set_len(len + 1);
4041        }
4042    }
4043}
4044
4045/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4046#[stable(feature = "rust1", since = "1.0.0")]
4047impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4048where
4049    T: PartialOrd,
4050    A1: Allocator,
4051    A2: Allocator,
4052{
4053    #[inline]
4054    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4055        PartialOrd::partial_cmp(&**self, &**other)
4056    }
4057}
4058
4059#[stable(feature = "rust1", since = "1.0.0")]
4060impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4061
4062/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4063#[stable(feature = "rust1", since = "1.0.0")]
4064impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4065    #[inline]
4066    fn cmp(&self, other: &Self) -> Ordering {
4067        Ord::cmp(&**self, &**other)
4068    }
4069}
4070
4071#[stable(feature = "rust1", since = "1.0.0")]
4072unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4073    fn drop(&mut self) {
4074        unsafe {
4075            // use drop for [T]
4076            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4077            // could avoid questions of validity in certain cases
4078            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4079        }
4080        // RawVec handles deallocation
4081    }
4082}
4083
4084#[stable(feature = "rust1", since = "1.0.0")]
4085#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4086impl<T> const Default for Vec<T> {
4087    /// Creates an empty `Vec<T>`.
4088    ///
4089    /// The vector will not allocate until elements are pushed onto it.
4090    fn default() -> Vec<T> {
4091        Vec::new()
4092    }
4093}
4094
4095#[stable(feature = "rust1", since = "1.0.0")]
4096impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4097    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4098        fmt::Debug::fmt(&**self, f)
4099    }
4100}
4101
4102#[stable(feature = "rust1", since = "1.0.0")]
4103impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4104    fn as_ref(&self) -> &Vec<T, A> {
4105        self
4106    }
4107}
4108
4109#[stable(feature = "vec_as_mut", since = "1.5.0")]
4110impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4111    fn as_mut(&mut self) -> &mut Vec<T, A> {
4112        self
4113    }
4114}
4115
4116#[stable(feature = "rust1", since = "1.0.0")]
4117impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4118    fn as_ref(&self) -> &[T] {
4119        self
4120    }
4121}
4122
4123#[stable(feature = "vec_as_mut", since = "1.5.0")]
4124impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4125    fn as_mut(&mut self) -> &mut [T] {
4126        self
4127    }
4128}
4129
4130#[cfg(not(no_global_oom_handling))]
4131#[stable(feature = "rust1", since = "1.0.0")]
4132impl<T: Clone> From<&[T]> for Vec<T> {
4133    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4134    ///
4135    /// # Examples
4136    ///
4137    /// ```
4138    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4139    /// ```
4140    fn from(s: &[T]) -> Vec<T> {
4141        s.to_vec()
4142    }
4143}
4144
4145#[cfg(not(no_global_oom_handling))]
4146#[stable(feature = "vec_from_mut", since = "1.19.0")]
4147impl<T: Clone> From<&mut [T]> for Vec<T> {
4148    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4149    ///
4150    /// # Examples
4151    ///
4152    /// ```
4153    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4154    /// ```
4155    fn from(s: &mut [T]) -> Vec<T> {
4156        s.to_vec()
4157    }
4158}
4159
4160#[cfg(not(no_global_oom_handling))]
4161#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4162impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4163    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4164    ///
4165    /// # Examples
4166    ///
4167    /// ```
4168    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4169    /// ```
4170    fn from(s: &[T; N]) -> Vec<T> {
4171        Self::from(s.as_slice())
4172    }
4173}
4174
4175#[cfg(not(no_global_oom_handling))]
4176#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4177impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4178    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4179    ///
4180    /// # Examples
4181    ///
4182    /// ```
4183    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4184    /// ```
4185    fn from(s: &mut [T; N]) -> Vec<T> {
4186        Self::from(s.as_mut_slice())
4187    }
4188}
4189
4190#[cfg(not(no_global_oom_handling))]
4191#[stable(feature = "vec_from_array", since = "1.44.0")]
4192impl<T, const N: usize> From<[T; N]> for Vec<T> {
4193    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4194    ///
4195    /// # Examples
4196    ///
4197    /// ```
4198    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4199    /// ```
4200    fn from(s: [T; N]) -> Vec<T> {
4201        <[T]>::into_vec(Box::new(s))
4202    }
4203}
4204
4205#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4206impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4207where
4208    [T]: ToOwned<Owned = Vec<T>>,
4209{
4210    /// Converts a clone-on-write slice into a vector.
4211    ///
4212    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4213    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4214    /// filled by cloning `s`'s items into it.
4215    ///
4216    /// # Examples
4217    ///
4218    /// ```
4219    /// # use std::borrow::Cow;
4220    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4221    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4222    /// assert_eq!(Vec::from(o), Vec::from(b));
4223    /// ```
4224    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4225        s.into_owned()
4226    }
4227}
4228
4229// note: test pulls in std, which causes errors here
4230#[stable(feature = "vec_from_box", since = "1.18.0")]
4231impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4232    /// Converts a boxed slice into a vector by transferring ownership of
4233    /// the existing heap allocation.
4234    ///
4235    /// # Examples
4236    ///
4237    /// ```
4238    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4239    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4240    /// ```
4241    fn from(s: Box<[T], A>) -> Self {
4242        s.into_vec()
4243    }
4244}
4245
4246// note: test pulls in std, which causes errors here
4247#[cfg(not(no_global_oom_handling))]
4248#[stable(feature = "box_from_vec", since = "1.20.0")]
4249impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4250    /// Converts a vector into a boxed slice.
4251    ///
4252    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4253    ///
4254    /// [owned slice]: Box
4255    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4256    ///
4257    /// # Examples
4258    ///
4259    /// ```
4260    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4261    /// ```
4262    ///
4263    /// Any excess capacity is removed:
4264    /// ```
4265    /// let mut vec = Vec::with_capacity(10);
4266    /// vec.extend([1, 2, 3]);
4267    ///
4268    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4269    /// ```
4270    fn from(v: Vec<T, A>) -> Self {
4271        v.into_boxed_slice()
4272    }
4273}
4274
4275#[cfg(not(no_global_oom_handling))]
4276#[stable(feature = "rust1", since = "1.0.0")]
4277impl From<&str> for Vec<u8> {
4278    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4279    ///
4280    /// # Examples
4281    ///
4282    /// ```
4283    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4284    /// ```
4285    fn from(s: &str) -> Vec<u8> {
4286        From::from(s.as_bytes())
4287    }
4288}
4289
4290#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4291impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4292    type Error = Vec<T, A>;
4293
4294    /// Gets the entire contents of the `Vec<T>` as an array,
4295    /// if its size exactly matches that of the requested array.
4296    ///
4297    /// # Examples
4298    ///
4299    /// ```
4300    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4301    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4302    /// ```
4303    ///
4304    /// If the length doesn't match, the input comes back in `Err`:
4305    /// ```
4306    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4307    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4308    /// ```
4309    ///
4310    /// If you're fine with just getting a prefix of the `Vec<T>`,
4311    /// you can call [`.truncate(N)`](Vec::truncate) first.
4312    /// ```
4313    /// let mut v = String::from("hello world").into_bytes();
4314    /// v.sort();
4315    /// v.truncate(2);
4316    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4317    /// assert_eq!(a, b' ');
4318    /// assert_eq!(b, b'd');
4319    /// ```
4320    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4321        if vec.len() != N {
4322            return Err(vec);
4323        }
4324
4325        // SAFETY: `.set_len(0)` is always sound.
4326        unsafe { vec.set_len(0) };
4327
4328        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4329        // the alignment the array needs is the same as the items.
4330        // We checked earlier that we have sufficient items.
4331        // The items will not double-drop as the `set_len`
4332        // tells the `Vec` not to also drop them.
4333        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4334        Ok(array)
4335    }
4336}