Abstract
Magnetic Resonance Images(MRI) are piecewise constant functions that can be corrupted by an inhomogeneous illumination field. We propose a gradient descent parametric illumination correction algorithm for MRI. The illumination bias is modelled as a linear combination of 2D products of Legendre polynomials. The error function is related to the classification error in the bias corrected image. In this work the intensity classes are given beforehand, so the adaptive algorithm is used only to estimate the bias field. We test our algorithm against Maximum A Posteriori algorithms over some images from the ISBR public domain database.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons, Chichester (1989)
Geman, D., Geman, S., Graffigne, C., Dong, P.: Boundary detection by constrained optimization. IEEE Trans. Patt. Anal. Mach. Int. 12(7), 609–628 (1990)
Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Patt. Anal. Mach. Int. 14(3), 367–383 (1992)
Internet Brain Segmentation Repository, http://www.cma.mgh.harvard.edu/ibsr/
Rajapakse, J.C., Kruggel, F.: Segmentation of MR images with intensity inhomogeneities. Image and Vision Comp. 16(3), 165–180 (1998)
Rusinek, H., et al.: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178, 109–114 (1991)
Styner, M., Gerig, G., Brechbühler, C., Szekely, G.: Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imag. 19(3), 153–165 (2000)
Wells III, W.M., Grimson, W.E.L., Kikinis, R., Jolez, F.A.: Adaptive Segmentation of MRI Data. IEEE Trans. Med. Imag. 15, 429–442 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garcia, M., Fernandez, E., Graña, M., Torrealdea, F.J. (2005). A Gradient Descent MRI Illumination Correction Algorithm. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_112
Download citation
DOI: https://doi.org/10.1007/11494669_112
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)