Skip to main content

A Gradient Descent MRI Illumination Correction Algorithm

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 3121 Accesses

Abstract

Magnetic Resonance Images(MRI) are piecewise constant functions that can be corrupted by an inhomogeneous illumination field. We propose a gradient descent parametric illumination correction algorithm for MRI. The illumination bias is modelled as a linear combination of 2D products of Legendre polynomials. The error function is related to the classification error in the bias corrected image. In this work the intensity classes are given beforehand, so the adaptive algorithm is used only to estimate the bias field. We test our algorithm against Maximum A Posteriori algorithms over some images from the ISBR public domain database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons, Chichester (1989)

    MATH  Google Scholar 

  2. Geman, D., Geman, S., Graffigne, C., Dong, P.: Boundary detection by constrained optimization. IEEE Trans. Patt. Anal. Mach. Int. 12(7), 609–628 (1990)

    Article  Google Scholar 

  3. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Patt. Anal. Mach. Int. 14(3), 367–383 (1992)

    Article  Google Scholar 

  4. Internet Brain Segmentation Repository, http://www.cma.mgh.harvard.edu/ibsr/

  5. Rajapakse, J.C., Kruggel, F.: Segmentation of MR images with intensity inhomogeneities. Image and Vision Comp. 16(3), 165–180 (1998)

    Article  Google Scholar 

  6. Rusinek, H., et al.: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178, 109–114 (1991)

    Google Scholar 

  7. Styner, M., Gerig, G., Brechbühler, C., Szekely, G.: Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imag. 19(3), 153–165 (2000)

    Article  Google Scholar 

  8. Wells III, W.M., Grimson, W.E.L., Kikinis, R., Jolez, F.A.: Adaptive Segmentation of MRI Data. IEEE Trans. Med. Imag. 15, 429–442 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcia, M., Fernandez, E., Graña, M., Torrealdea, F.J. (2005). A Gradient Descent MRI Illumination Correction Algorithm. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_112

Download citation

  • DOI: https://doi.org/10.1007/11494669_112

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics