Abstract
This paper presents an adaptive Power System Stabilizer (PSS) using an Adaptive Network Based Fuzzy Inference System (ANFIS) and Genetic Algorithms (GAs). Firstly, genetic algorithms are used to tune a conventional PSS on a wide range of operating conditions and then, the relationship between these operating points and the PSS parameters is learned by the ANFIS. The ANFIS optimally selectes the classical PSS parameters based on machine loading conditions. The proposed stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The results show the robustness and the capability of the stabilizer to enhance system damping over a wide range of operating conditions and system parameter variations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Mello, F.P., Concordia, C.: Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions Power Apparatus and Systems 88, 316–329 (1969)
Klein, M., Rogers, G.J., Kundur, P.: A fundamental study of inter-area oscillations in power systems. IEEE Transactions on Power Systems 6(3), 914–921 (1991)
Busby, E.L., Hurley, J.D., Keay, F.W., Raczkowski, C.: Dynamic stability improvement at Monticello station - analytical study and field tests. IEEE Trans Power Apparatus and Systems PAS-98(34), 889–901 (1979)
Van Ness, J.E., Brash Jr., F.M., Landgren, G.L., Naumann, S.T.: Analytical investigations of dynamic instability ocurring at Powerton station. IEEE. Transactions Power Apparatus and Systems PAS-99(4), 1386–1395 (1980)
Larsen, E.V., Swann, D.A.: Applying power system stabilizers, parts I and II. IEEE Transactions Power Apparatus and Systems 100, 3017–3046 (1981)
Hsu, Y.Y., Hsu, C.Y.: Design of a proportional-integral power system stabilizer. IEEE Trans Power Systems 2(1), 92–100 (1987)
Gosh, A., Ledwich, G., Malik, O.P., Hope, G.S.: Power system stabilizer based on adaptive control techniques. IEEE Transactions Power Apparatus and Systems 103(8), 1983–1989 (1984)
Hsu, Y.Y., Liou, K.L.: Design of self-tuning pid power system stabilizers for synchronous generators. IEEE Transactions on Energy Conversion 2(3), 343–348 (1987)
Chen, G.P., Malik, O.P., Hope, G.S., Qin, Y.H., Xu, G.Y.: An adaptive power system stabilizer based on the self-optimizing pole shifting control strategy. IEEE Transactions on Energy Conversion 8(4), 639–645 (1993)
Kotari, M.L., Bhattacharya, K., Nanda, J.: Adaptive power system stabiliser based on pole-shifting technique. IEE Proceedings on Generation, Transmission and Distribution 143(1), 96–98 (1996)
Hariri, A., Malik, O.P.: A fuzzy logic based power system stabilizer with learning ability. IEEE Transactions on Energy Conversion 11(4), 721–727 (1986)
Hassan, M.A.M., Malik, O.P., Hope, G.S.: A fuzzy logic based stabilizer for a synchronous machine. IEEE Transactions on Energy Conversion 6(3), 407–413 (1991)
El-Metwally, K.A., Hancock, G.C., Malik, O.P.: Implementation of a fuzzy logic PSS using a micro-controller and experimental test results. IEEE Transactions on Energy Conversion 11(1), 91–96 (1996)
El-Sherbiny, M.K., El-Saady, G., Ibrahim, E.A.: Efficient incremental fuzzy logic for power system stabilization. Electric Machines and Power Systems 25, 429–441 (1997)
Park, Y.-M., Choi, M.-S., Lee, K.Y.: A neural network-based power system stabilizer using power flow characteristics. IEEE Transactions on Energy Conversion 11(2), 435–441 (1996)
Park, Y.-M., Hyun, S.-H., Lee, J.-H.: A synchronous generator stabilizer design using neuro inverse controller and error reduction network. IEEE Transactions on Power Systems 11(4), 1969–1975 (1996)
Flynn, D., McLoone, S., Irwin, G.W., Brown, M.D., Swidenbank, E., Hogg, B.W.: Neural control of turbogenerator systems. Automatica 33(11), 1961–1973 (1997)
Salem, M.M., Zaki, A.M., Mahgoub, O.A., Abu El-Zahab, E., Malik, O.P.: Experimental verification of a generating unit excitation neuro-controller. IEEE Power Engineering Society Winter Meeting 1, 585–590 (2000)
Abdel-Magid, Y.L., Bettayeb, M., Dawoud, M.M.: Simultaneous stabilisation of power systems using genetic algorithms. IEE Proc.-Gener. Transm. Distrib. 144(1), 39–44 (1997)
Abido, M.A., Abdel-Magid, Y.L.: A genetic-based power system stabilizer. Electric Machines and Power Systems 26, 559–571 (1998)
Abdel-Magid, Y.L., Abido, M.A., Al-Baiyat, S., Mantawy, A.H.: Simultaneous stabilization of multimachine power systems via genetic algorithms. IEEE Transactions on Power Systems 14(4), 1428–1439 (1999)
Lakshmi, P., Abdullah Khan, M.: Stability enhacement of a multimachine power system using fuzzy logic based power system stabilizer tuned through genetic algorithm. Electric Power and Energy Systems 22, 137–145 (2000)
Holland, J.H.: Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 3, 297–314 (1962)
Lin, C.-T., Lee, C.S.G.: Neural Fuzzy Systems. A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice-Hall, Englewood Cliffs (1996)
Roger Jang, J.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23(3), 665–685 (1993)
Fraile-Ardanuy, J.: Design of an adaptive neuro-fuzzy PSS adjusted by a genetic algorithm. Ph.D Thesis. Polytechnic University of Madrid (Spain) (2003)
Karnin, E.D.: A simple procedure for pruning back-propagation trained neural networks. IEEE Transactions on Neural Networks 1(2), 239–241 (1990)
Sietsma, J., Dow, R.J.F.: Neural net pruning. Why and how? In: Proc. IEEE Int. Conference on Neural Networks, vol. 1, pp. 325–333 (1998)
Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, New York (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fraile-Ardanuy, J., Zufiria, P.J. (2005). Adaptive Power System Stabilizer Using ANFIS and Genetic Algorithms. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_138
Download citation
DOI: https://doi.org/10.1007/11494669_138
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)