Skip to main content

Multichannel Blind Signal Separation in Semiconductor-Based GAS Sensor Arrays

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

Traditional approaches to gas sensing are usually related with gas identification and classification, i.e., recognition of aromas. In this work we propose an innovative approach to determine the concentration of the single species in a gas mixture by using nonlinear source separation techniques. Additionally, responses of tin oxide sensor arrays were analyzed using nonlinear regression techniques to determine the concentrations of ammonia and acetone in gas mixtures. The use of the source separation approach allows the compensation of some of the most important sensor disadvantages: the parameter spreading and time drift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Herault, J., Jutten, C.: Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic structure. Signal Processing 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  2. Moss, S.D., Johnson, C.C., Janata, J.: Hydrogen, Calcium and Potassium Ion-Sensitive FET Transducers: A preliminary Report. IEEE Trans. on Biomedical engineering 25(1), 49–56 (1978)

    Article  Google Scholar 

  3. Taleb, A., Jutten, C.: Source Separation in Post-Non linear Mixtures. IEEE Trans. on Signal Processing 47(10), 2807–2820 (1999)

    Article  Google Scholar 

  4. Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  5. Solazzi, M., Parisi, R., Uncini, A.: Blind source separation in nonlinear mixtures by adaptive spline neural networks. In: Proc. Int. Conf. on Independent Component Analysis and Signal Separation (ICA 2001), San Diego, CA, USA, pp. 254–259 (2001)

    Google Scholar 

  6. Ziehe, A., Kawanabe, M., Harmeling, S., Muller, K.-R.: Separation of post-nonlinear mixtures using ACE and temporal decorrelation. In: Proc. Int. Conf. on Independent Component Analysis and Signal Separation (ICA 2001), San Diego, USA, pp. 433–438 (2001)

    Google Scholar 

  7. Ziehe, A., Kawanabe, M., Harmeling, S., Muller, K.-R.: Blind separation of post-nonlinear mixtures using gaussianizing transformations and temporal decorrelation, Nara, Japan (2003)

    Google Scholar 

  8. Harmeling, S., Ziehe, A., Kawanabe, M., Muller, K.-R.: Kernel feature spaces and nonlinear blind source separation. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 761–768. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Scholkopf, B.: Statistical Learning And Kernel methods. Technical report MSR-TR-2000-23. Microsoft research. Gunne, Germany (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bedoya, G., Bermejo, S., Cabestany, J. (2005). Multichannel Blind Signal Separation in Semiconductor-Based GAS Sensor Arrays. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_130

Download citation

  • DOI: https://doi.org/10.1007/11494669_130

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics