Abstract
In this paper we propose a new algorithm for the clustering of signals using incomplete independent component analysis (ICA). In the first step we apply the ICA to the dataset without dimension reduction, in the second step we reduce the dimension of the data to find clusters of independent components that are similar in their entries in the mixture matrix found by the ICA. We demonstrate that our algorithm out-performs k-means in the case of toy data and works well with a real world fMRI example, thus allowing a closer look the way how different parts of the brain work together.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bach, F.R., Jordan, M.I.: Beyond independent components: Trees and Clusters. Journal of Machine Learning Research 4, 1205–1233 (2003)
Hyvärinen, A., Hoyer, P.: Topographic independent component analysis. Neural Computation 13, 1527–1558 (2001)
Meyer-Bäse, A., Theis, F.J., Lange, O., Puntonet, C.G.: Tree-Dependent and Topographic Independent Component Analysis for fMRI Analysis. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 782–789. Springer, Heidelberg (2004)
Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R.J., Mazziotta, J.C.: Human Brain Function. Academic Press, San Diego (1997)
Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)
Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)
Amari, S.: Natural Gradient Learning for Over- and Under-Complete Bases in ICA. Neural Computation 11, 1875–1883 (1999)
Theis, F.J., Jung, A., Puntonet, C.G., Lang, E.W.: Linear geometric ICA: Fundamentals and algorithms. Neural Computation 15, 419–439 (2003)
Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13(4-5), 411–430 (2000)
Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A Blind Source Separation Technique Using Second-Order Statistics. IEEE Transactions on Signal Processing 45(2), 434–444 (1997)
McKeown, M.J., Sejnowski, T.J.: Analysis of fmri data by blind separation into independent spatial components. Human Brain Mapping 6, 160–188 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Keck, I.R., Lang, E.W., Nassabay, S., Puntonet, C.G. (2005). Clustering of Signals Using Incomplete Independent Component Analysis. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_131
Download citation
DOI: https://doi.org/10.1007/11494669_131
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)