Abstract
When agent chooses some action and does state transition in present state in reinforcement learning, it is important subject to decide how will reward for conduct that agent chooses. In this paper, we suggest multi colony interaction ant reinforcement learning model using TD-error to original Ant-Q learning. This method is a hybrid of multi colony interaction by elite strategy and reinforcement learning applying TD-error to Ant-Q. We could know through an experiment that proposed reinforcement learning method converges faster to optimal solution than original ACS and Ant-Q.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Colorni, A., Dorigo, M., Maniezzo, V.: An investigation of some properties of an ant algorithm. In: Manner, R., Manderick, B. (eds.) Proceediings of the Parallel Parallel Problem Solving from Nature Conference(PPSn 1992), pp. 509–520. Elsevier Publishing, Amsterdam (1992)
Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Varela, F., Bourgine, P. (eds.) Proceedings of ECAL 1991 - European Conference of Artificial Life, Paris, France, pp. 134–144. Elsevier Publishing, Amsterdam (1991)
Gambardella, L.M., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. In: Proceedings of IEEE International Conference of Evolutionary Computation, IEEE-EC 1996, pp. 622–627. IEEE Press, Los Alamitos (1996)
Drigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperation agents. IEEE Transactions of Systems, Man, and Cybernetics-Part B 26(2), 29–41 (1996)
Stutzle, T., Hoos, H.: The ant system and local search for the traveling salesman problem. In: Proceedings of ICEC 1997 IEEE 4th International Conference of Evolutionary (1997)
Gambardella, L.M., Dorigo, M.: Ant-Q: a reinforcement learning approach to the traveling salesman problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of ML 1995, Twelfth International Conference on Machine Learning, pp. 252–260. Morgan Kaufmann, San Francisco (1995)
Dorigo, M., Gambardella, L.M.: A study of some properties of Ant-Q. In: Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.S. (eds.) Proceedings of PPSN IVFourth International Conference on Parallel Problem Solving From Nature, pp. 656–665. Springer, Berlin (1996)
Fiecher, C.N.: Efficient reinforcement learning. In: Proceedings of the Seventh Annual ACM Conference On Computational Learning Theory, pp. 88–97 (1994)
Barnald, E.: Temporal-difference methods and markov model. IEEE Transactions on Systems, Man, and Cybernetics 23, 357–365 (1993)
Kawamura, H., Yamamoto, M., Suzuki, K., Ohuchi, A.: Multiple Ant Colonies Algorithm Based on Colony Level Interactions. IEICE Transactions E83-A(2), 371–379 (2000)
Gambardella, L.M., Dorigo, M.: Ant Colony System: A Cooperative Learning approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1) (1997)
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, S., Chung, T. (2005). A Reinforcement Learning Algorithm Using Temporal Difference Error in Ant Model. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_27
Download citation
DOI: https://doi.org/10.1007/11494669_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)