Skip to main content

Extended Sparse Nonnegative Matrix Factorization

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 3178 Accesses

Abstract

In sparse nonnegative component analysis (sparse NMF) a given dataset is decomposed into a mixing matrix and a feature data set, which are both nonnegative and fulfill certain sparsity constraints. In this paper, we extend the sparse NMF algorithm to allow for varying sparsity in each feature and discuss the uniqueness of an involved projection step. Furthermore, the eligibility of the extended sparse NMF algorithm for blind source separation is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    MathSciNet  Google Scholar 

  2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 40, 788–791 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stadlthanner, K., Theis, F.J., Puntonet, C.G., Lang, E.W. (2005). Extended Sparse Nonnegative Matrix Factorization. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_31

Download citation

  • DOI: https://doi.org/10.1007/11494669_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics