Skip to main content

Approximating I/O Data Using Radial Basis Functions: A New Clustering-Based Approach

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 3135 Accesses

Abstract

In this paper, we deal with the problem of function approximation from a given set of input/output data. This problem consists of analyzing these training examples so that we can predict the output of the model given new inputs. We present a new method for function approximation of the I/O data using radial basis functions (RBFs). This approach is based on a new efficient method of clustering of the centres of the RBF Network (RBFN); it uses the objective output of the RBFN to move the clusters instead of just the input values of the I/O data. This method of clustering, especially designed for function approximation problems, improves the performance of the approximator system obtained, compared with other models derived from traditional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pomares, H., Rojas, I., Ortega, J., González, J., Prieto, A.: A Systematic Approach to Self-Generating Fuzzy Rule-Table for Function Approximation. IEEE Trans. Syst, Man, and Cybern, Part-B 30(3), 431–447 (2000)

    Article  Google Scholar 

  2. Higgins, C.: Classifications and approximation with Rule-Based Networks. Phd. Thesis, 33-36 (1993)

    Google Scholar 

  3. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis functions networks. IEEE Trans. Neural Networks 2(2), 302–309 (1991)

    Article  Google Scholar 

  4. Orr, M.J.L.: Regularization in the selection of radial basis function centers. Neural Computation 7(3), 606–623 (1995)

    Article  Google Scholar 

  5. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Google Scholar 

  7. Russo, M., Patanè, G.: Improving the LBG Algorithm. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1606, pp. 621–630. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Gonzalez, J., Rojas, I., Pomares, H., Ortega, J., Prieto, A.: A new clustering technique for function approximation. IEEE Trans. Neural Networks 13(1), 132–142 (2002)

    Article  Google Scholar 

  9. Pedrycz, W.: Conditional fuzzy C-means. Pattern Recognition Lett. 17, 625–632 (1996)

    Article  Google Scholar 

  10. Runkler, T.A., Bezdek, J.C.: Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. Fuzz Syst. 7, 377–393 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Awad, M., Pomares, H., Herrera, L.J., González, J., Guillén, A., Rojas, F. (2005). Approximating I/O Data Using Radial Basis Functions: A New Clustering-Based Approach. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_36

Download citation

  • DOI: https://doi.org/10.1007/11494669_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics