Skip to main content

Application of ANOVA to a Cooperative-Coevolutionary Optimization of RBFNs

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 3125 Accesses

Abstract

In this paper the behaviour of a multiobjective cooperative-coevolutive hybrid algorithm for the optimization of the parameters defining a Radial Basis Function Network developed by our group, is analyzed. In order to demonstrate the robustness of the behaviour of the presented methodology when the parameters of the algorithm are modified, a statistical analysis has been carried out. In the present contribution, the relevance and relative importance of the parameters involved in the design of the multiobjective cooperative-coevolutive hybrid algorithm presented are investigated by using a powerful statistical tool, the ANalysis Of the VAriance (ANOVA). To demonstrate the robustness of our algorithm, a functional approximation problem is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation 1(1), 3–17 (1997)

    Article  Google Scholar 

  2. Potter, M., De Jong, K.: Cooperative Coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

    Article  Google Scholar 

  3. Rivera, A., Ortega, J., Rojas, I., del Jesús, M.: Co-evolutionary Algorithm for RBF by Self-Organizing Population of Neurons. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 470–477. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Rivera, A.: Diseño y Optimización de Redes de Funciones de Base Radial Mediante Técnicas Bioinspiradas. Ph.D. dissertation, Univ. Granada, Spain (September 2003)

    Google Scholar 

  5. Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Orr, M.: Introduction to radial basis function networks. Technical report. Center for cognitive science. University of Edinburgh (1996)

    Google Scholar 

  7. Rojas, I., Valenzuela, O., Prieto, A.: Statistical Analysis of the Main Parameters in the Definition of Radial Basic Function Networks. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 882–891. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)

    Article  Google Scholar 

  9. Fisher, R.A.: The Comparison of Samples with Possibly Unequal Variances. Annals of Eugenics 9, 174–180 (1936); Also in Fisher, R.A.: Contribution to Mathematical Statistics. Wiley, New York (1950)

    Google Scholar 

  10. Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proc. of the IEEE 78(9) (September 1990)

    Google Scholar 

  11. Mendel, J.: Fuzzy logic system for engineering: a tutorial. Proceedings of the IEEE 83(3) (March 1995)

    Google Scholar 

  12. Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud. 7(1), 1–13 (1975)

    Article  Google Scholar 

  13. Cherkassky, V., Gehring, D., Mulier, F.: Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Networks 7(4), 969–984 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivera, A.J., Rojas, I., Ortega, J. (2005). Application of ANOVA to a Cooperative-Coevolutionary Optimization of RBFNs. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_37

Download citation

  • DOI: https://doi.org/10.1007/11494669_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics