Abstract
In this paper the behaviour of a multiobjective cooperative-coevolutive hybrid algorithm for the optimization of the parameters defining a Radial Basis Function Network developed by our group, is analyzed. In order to demonstrate the robustness of the behaviour of the presented methodology when the parameters of the algorithm are modified, a statistical analysis has been carried out. In the present contribution, the relevance and relative importance of the parameters involved in the design of the multiobjective cooperative-coevolutive hybrid algorithm presented are investigated by using a powerful statistical tool, the ANalysis Of the VAriance (ANOVA). To demonstrate the robustness of our algorithm, a functional approximation problem is investigated.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation 1(1), 3–17 (1997)
Potter, M., De Jong, K.: Cooperative Coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)
Rivera, A., Ortega, J., Rojas, I., del Jesús, M.: Co-evolutionary Algorithm for RBF by Self-Organizing Population of Neurons. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 470–477. Springer, Heidelberg (2003)
Rivera, A.: Diseño y Optimización de Redes de Funciones de Base Radial Mediante Técnicas Bioinspiradas. Ph.D. dissertation, Univ. Granada, Spain (September 2003)
Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)
Orr, M.: Introduction to radial basis function networks. Technical report. Center for cognitive science. University of Edinburgh (1996)
Rojas, I., Valenzuela, O., Prieto, A.: Statistical Analysis of the Main Parameters in the Definition of Radial Basic Function Networks. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 882–891. Springer, Heidelberg (1997)
Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)
Fisher, R.A.: The Comparison of Samples with Possibly Unequal Variances. Annals of Eugenics 9, 174–180 (1936); Also in Fisher, R.A.: Contribution to Mathematical Statistics. Wiley, New York (1950)
Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proc. of the IEEE 78(9) (September 1990)
Mendel, J.: Fuzzy logic system for engineering: a tutorial. Proceedings of the IEEE 83(3) (March 1995)
Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud. 7(1), 1–13 (1975)
Cherkassky, V., Gehring, D., Mulier, F.: Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Networks 7(4), 969–984 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rivera, A.J., Rojas, I., Ortega, J. (2005). Application of ANOVA to a Cooperative-Coevolutionary Optimization of RBFNs. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_37
Download citation
DOI: https://doi.org/10.1007/11494669_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)