Skip to main content

Characterizing Self-developing Biological Neural Networks: A First Step Towards Their Application to Computing Systems

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 3145 Accesses

Abstract

Carbon nanotubes are often seen as the only alternative technology to silicon transistors. While they are the most likely short-term alternative, other longer-term alternatives should be studied as well, even if their properties are less familiar to chip designers. While contemplating biological neurons as an alternative component may seem preposterous at first sight, significant recent progress in CMOS-neuron interface suggests this direction may not be unrealistic; moreover, biological neurons are known to self-assemble into very large networks capable of complex information processing tasks, something that has yet to be achieved with other emerging technologies.

The first step to designing computing systems on top of biological neurons is to build an abstract model of self-assembled biological neural networks, much like computer architects manipulate abstract models of transistors and circuits. In this article, we propose a first model of the structure of biological neural networks. We provide empirical evidence that this model matches the biological neural networks found in living organisms, and exhibits the small-world graph structure properties commonly found in many large and self-organized systems, including biological neural networks. More importantly, we extract the simple local rules and characteristics governing the growth of such networks, enabling the development of potentially large but realistic biological neural networks, as would be needed for complex information processing/computing tasks. Based on this model, future work will be targeted to understanding the evolution and learning properties of such networks, and how they can be used to build computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albertson, D.G., Thomson, J.N.: The pharynx of caenorhabditis elegans. Phil. Trans. R. Soc. London B 275, 229–325 (1976)

    Article  Google Scholar 

  2. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 10, 11149–11152 (2000)

    Article  Google Scholar 

  3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Rev. Genetics 5, 101–113 (2004)

    Article  Google Scholar 

  5. Ferrer Cancho, R., Janssen, C., Solé, R.V.: The topology of technology graphs: Small world patterns in electronic circuits. Phys. Rev. E. 64, 32767 (2001)

    Google Scholar 

  6. Cherniak, C.: Component placement optimization in the brain. J. Neurosci. 14, 2418–2427 (1994)

    Google Scholar 

  7. Cherniak, C.: Neural component placement. Trends Neurosc. 18, 522–527 (1995)

    Article  Google Scholar 

  8. Chklovskii, D.B., Schikorski, T., Stevens, C.F.: Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002)

    Article  Google Scholar 

  9. Clark, J.W., Eggebrecht, A.T.: The small world of the nobel nematode caenorhabditis elegans. In: da Providencia, J., Malik, F.B. (eds.) Condensed Matter Theories, vol. 18, Nova Science Publishers, Hauppauge (to appear)

    Google Scholar 

  10. Douglas, R., Martin, K.: Neocortex. In: Shepherd, G.M. (ed.) The synaptic organization of the brain, pp. 459–509. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Eguiluz, V.M., Chialvo, D.R., Cecchi, G., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 18102 (2005)

    Article  Google Scholar 

  12. Fromherz, P.: Neuroelectronic interfacing: Semiconductor chips with ion channels, nerve cells, and brain. In: Waser, R. (ed.) Nanoelectronics and informaiton technology, pp. 781–810. Wiley–VCH, Berlin (2003)

    Google Scholar 

  13. Goldstein, S.C., Budiu, M.: NanoFabrics: Spatial computing using molecular electronics. In: Proceedings of the 28th International Symposium on Computer Architecture 2001 (2001)

    Google Scholar 

  14. Haykin, S.: Neural Networks, 2nd edn. Prentice Hall Intl, London (1999)

    MATH  Google Scholar 

  15. Ferrer i Cancho, R., Solé, R.V.: Optimization in complex networks. In: Statistical physics of complex networks, Lecture notes in physics, pp. 114–125. Springer, Berlin (2003)

    Google Scholar 

  16. Infineon. Neurochip with integrated electronics in research phase (2003), http://www.infineon.com/cgi/ecrm.dll/jsp/showfrontend.do?lang=EN&channel_oid=-11398

  17. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  18. Kaiser, M., Hilgetag, C.C.: Spatial growth of real-world networks. Phys. Rev. E 69, 036103 (2004)

    Article  Google Scholar 

  19. Kimura, M., Saito, K., Ueda, N.: Modeling of growing networks with directional attachment and communities. Neural Networks 17, 975–988 (2004)

    Article  MATH  Google Scholar 

  20. Mathias, N., Gopal, V.: Small worlds: how and why. Phys. Rev. E 63, 021117 (2001)

    Article  Google Scholar 

  21. Morita, S., Oshio, K.-I., Osana, Y., Funabashi, Y., Oka, K., Kawamura, K.: Geometrical structure of the neuronal network of caenorhabditis elegans. Physica A 298, 553–561 (2001)

    Article  MATH  Google Scholar 

  22. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K., Kawamura, K.: Database of synaptic connectivity of c. elegans for computation. Technical Report 3, CCeP, Keio Future, Keio University, Japan (2003), The connectivity database is available online at http://ims.dse.ibaraki.ac.jp/research/database_en.html

  24. Rakic, P.: Immigration denied. Nature 427, 685–686 (2004)

    Article  Google Scholar 

  25. Sporns, O.: Graph theory methods for the analysis of neural connectivity patterns. In: Kötter, R. (ed.) Neuroscience Databases: A Practical Guide, pp. 171–186. Klüwer, Boston (2002)

    Google Scholar 

  26. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organisation, development and function of complex brain networks. Trends Cog. Sci. 8, 418–425 (2004)

    Article  Google Scholar 

  27. Valverde, S., Cancho, R.F., Solé, R.V.: Scale-free networks from optimal design. Europhys. Lett. 60, 512–517 (2002)

    Article  Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  29. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Phil. Trans. R. Soc. London B 314, 1–340 (1986)

    Article  Google Scholar 

  30. Zeck, G., Fromherz, P.: Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proc. Natl. Acad. Sci. USA 98(18), 10457–10462 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, H., Temam, O. (2005). Characterizing Self-developing Biological Neural Networks: A First Step Towards Their Application to Computing Systems. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_38

Download citation

  • DOI: https://doi.org/10.1007/11494669_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics