Abstract
TSK models are a very powerful tool for function approximation problems given a dataset of input/output data. Given a global error function to approximate, there are several methodologies for training (adjust the parameters and find the optimal structure) the TSK model. Nevertheless, this strategy implies that the interpretability of the rules comprising the neuro-fuzzy TSK system as linearizations of the nonlinear subjacent system can be lost. Several recent works have addressed this problem with partial success, sometimes performing a tradeoff between global accuracy and local models interpretability. In this paper we propose an accurate modified TSK neuro-fuzzy model for function approximation that solves the cited problem, and that furthermore allows us to interprete the output of the rules as the Taylor Series Expansion of the system output around the rule centres.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man and Cyber. 15, 116–132 (1985)
Johansen, T.A., Babuska, R.: Multiobjective Identification of Takagi-Sugeno Fuzzy Models. IEEE Trans. Fuz. Syst. 11(6), 847–860 (2003)
Zhou, S.M., Gan, J.Q.: Improving the interpretability of Takagi-Sugeno fuzzy model by using linguistic modifiers and a multiple objective learning scheme. In: Int. Joint Conf. on Neural Networks IJCNN, pp. 2385–2390 (2004)
Bikdash, M.: A Highly Interpretable Form of Sugeno Inference Systems. IEEE Trans. Fuz. Syst. 7(6), 686–696 (1999)
Herrera, L.J., Pomares, H., Rojas, I., González, J., Valenzuela, O.: Function approximation through fuzzy systems using taylor series expansion-based rules: Interpretability and parameter tuning. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 252–261. Springer, Heidelberg (2004)
Herrera, L.J., Pomares, H., Rojas, I., Valenzuela, O., Prieto, A.: TaSe, a Taylor Series Based Fuzzy System Model that Combines Interpretability and Accuracy. Fuzzy Sets and Systems (accepted)
González, J., Rojas, I., Pomares, H., Ortega, J., Prieto, A.: A new Clustering Technique for Function Aproximation. IEEE Transactions on Neural Networks 13(1), 132–142 (2002)
Pomares, H., Rojas, I., Ortega, J., Prieto, A.: A systematic approach to a self-generating fuzzy rule-table for function approximation. IEEE Trans. Syst., Man, Cybern. 30, 431–447 (2000)
Chiu, S.: Fuzzy Model Identification Based on Cluster Estimation. Journal of Intelligent and Fuzzy Systems 2(3) (1994)
Guillaume, S.: Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans. Fuzzy Systems 9, 426–443 (2001)
Rojas, I., Rojas, F., Pomares, H., Herrera, L.J., González, J., Valenzuela, O.: The synergy between classical and soft-computing techniques for time series prediction. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 30–39. Springer, Heidelberg (2004)
Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Herrera, L.J., Pomares, H., Rojas, I., Guilén, A., González, J., Awad, M. (2005). Clustering-Based TSK Neuro-fuzzy Model for Function Approximation with Interpretable Sub-models. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_49
Download citation
DOI: https://doi.org/10.1007/11494669_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)