Abstract
This contribution presents the hardware implementation of a neural system, which is a variant of a Hopfield network, modified to perform parametric identification of dynamical systems, so that the resulting network possess time-varying weights. The implementation, which is accomplished on FPGA circuits, is carefully designed so that it is able to deal with these dynamic weights, as well as preserve the natural parallelism of neural networks, at a limited cost in terms of occupied area and processing time. The design achieves modularity and flexibility, due to the usage of parametric VHDL to describe the network. The functional simulation and the synthesis show the viability of the design, whose refinement will lead to the development of an embedded adaptive controller for autonomous systems.
This work has been partially supported by the Spanish Ministerio de Ciencia y Tecnología (MCYT), Project No. TIN2004-05961. H. Boumeridja acknowledges the support of a fellowship of the Agencia Española de Cooperación Internacional (AECI).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Porrmann, M., Witkowski, U., Kalte, H., Rückert, U.: Dynamically reconfigurable hardware - A new perspective for neural network implementations. In: Glesner, M., Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 1048–1057. Springer, Heidelberg (2002)
Zhu, J., Sutton, P.: FPGA Implementations of Neural Networks - A Survey of a Decade of Progress. In: Cheung, P.Y., Constantinides, G.A., de Sousa, J.T. (eds.) FPL 2003. LNCS, vol. 2778, pp. 1062–1066. Springer, Heidelberg (2003)
Atencia, M.A., Joya, G., Sandoval, F.: Parametric Identification of Robotic Systems with Stable Time-varying Hopfield Networks. Neural Computing & Applications 13, 270–280 (2004)
Izeboudjen, N., Farah, A., Titri, S., Boumeridja, H.: Digital implementation of artificial neural networks: From VHDL description to FPGA implementation. In: Mira, J., Sanchez-Andres, J. (eds.) IWANN 1999. LNCS, vol. 1607, pp. 139–148. Springer, Heidelberg (1999)
Abe, S.: Theories on the Hopfield Neural Networks. In: Proc. IEE International Joint Conference on Neural Networks, vol. I, pp. 557–564 (1989)
Joya, G., Atencia, M.A., Sandoval, F.: Hopfield Neural Networks for Optimization: Study of the Different Dynamics. Neurocomputing 43, 219–237 (2002)
Atencia, M.A., Joya, G., Sandoval, F.: Dynamical Analysis of Continuous Higher Order Hopfield Networks for Combinatorial Optimization. Neural Computation (2005) (in press)
Spong, M.W., Vidyasagar, M.: Robot dynamics and control. John Wiley & Sons, Chichester (1989)
Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boumeridja, H., Atencia, M., Joya, G., Sandoval, F. (2005). FPGA Implementation of Hopfield Networks for Systems Identification. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_71
Download citation
DOI: https://doi.org/10.1007/11494669_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)