Abstract
Artificial Neural Networks (ANNs)
This work was supported by the ALGORITMI research center and the FCT project POSI/EIA/59899/2004.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cortez, P., Rocha, M., Neves, J.: A Lamarckian Approach for Neural Network Training. Neural Processing Letters 15(2), 105–116 (2002)
Dietterich, T.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Haykin, S.: Neural Networks - A Compreensive Foundation, 2nd edn. Prentice-Hall, New Jersey (1999)
Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Quebec, Canada (August 1995)
Kwok, T., Yeung, D.: Constructive algorithms for structure learning in feedforward neural networks for regression problems problems: A survey. IEEE Transactions on Neural Networks 8(3), 630–645 (1999)
Liu, Y., Yao, X.: Evolving Modular Neural Networks Which Generalize Well. In: Proc. of the 1997 IEEE Intern. Confer. on Evolutionary Computation, Indianapolis, New York, pp. 670–675. IEEE, Los Alamitos (1997)
Liu, Y., Yao, X., Higuchi, T.: Evolutionary Ensembles with Negative Correlation Learning. IEEE Transactions on Evolutionary Computation 4(4), 380–387 (2000)
Quinlan, J.R.: Comparing Connectionist and Symbolic Learning Methods, pp. 445–456. MIT Press, Cambridge (1994)
Riedmiller, M.: Supervised Learning in Multilayer Perceptrons - from Backpropagation to Adaptive Learning Techniques. Computer Standards and Interfaces 16 (1994)
Rocha, M., Cortez, P.C., Neves, J.: Evolutionary Neural Network Learning. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 24–28. Springer, Heidelberg (2003)
Rocha, M., Cortez, P., Neves, J.: Ensembles of Artificial Neural Networks with Heterogeneous Topologies. In: Proceedings of the 4th Symposium on Engineering of Intelligent Systems (EIS 2004), ICSC Academic Press (March 2004)
Rocha, M., Cortez, P., Neves, J.: Evolutionary Design of Neural Networks for Classification and Regression. In: ICANNGA Proceedings, Coimbra, Portugal, Springer, Heidelberg (March 2005)
Soares, C.: Is the UCI Repository Useful for Data Mining? In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 209–223. Springer, Heidelberg (2003)
Thimm, G., Fiesler, E.: Evaluating pruning methods. In: Proc. of the Int. Symp. on Artificial Neural Networks, Taiwan, pp. 20–25 (December 1995)
Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, USA (2000)
Yao, X.: Evolving Artificial Neural Networks. Proc. of the IEEE 87(9), 1423–1447 (1999)
Yao, X., Liu, Y.: A New Evolutionary System for Evolving Artificial Neural Networks. IEEE Transactions on Neural Networks 8(3), 694–713 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rocha, M., Cortez, P., Neves, J. (2005). Simultaneous Evolution of Neural Network Topologies and Weights for Classification and Regression. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_8
Download citation
DOI: https://doi.org/10.1007/11494669_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)