Abstract
We propose a technique to speed up the learning of the inverse kinematics of a robot manipulator by decomposing it into two or more virtual robot arms. Unlike previous decomposition approaches, this one does not place any requirement on the robot architecture and, thus, it is completely general. Parametrized Self-Organizing Maps (PSOM) are particularly adequate for this type of learning, and permit comparing results obtained directly and through the decomposition. Experimentation shows that time reductions of up to two orders of magnitude are easily attained.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fu, K.S., González, R.C., Lee, C.S.G.: Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill, New York (1987)
Kröse, B.J.A., van der Smagt, P.P.: An Introduction to Neural Networks. In: Robot Control, 5th edn., ch. 7, University of Amsterdam (1993)
Martinetz, T.M., Ritter, H.J., Schulten, K.J.: Three-dimensional neural net for learning visuomotor coordination of a robot arm. IEEE Trans. on Neural Networks 1, 131–136 (1990)
Ritter, H., Martinetz, T., Schulten, K.J.: Neural Computation and Self-Organizing Maps. Addison Wesley, New York (1992)
de Ruiz Angulo, V., Torras, C.: Self-calibration of a space robot. IEEE Trans. on Neural Networks 8, 951–963 (1997)
Ruiz de Angulo, V., Torras, C.: Learning inverse kinematics via cross-point function decomposition. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 856–861. Springer, Heidelberg (2002)
Ruiz de Angulo, V., Torras, C.: Speeding up the learning of robot kinematics through function decomposition. IEEE Trans. on Neural Networks (to appear)
Saune Sánchez, D.: Recalibración de un brazo robot mediante técnicas de descomposición de la cinemática. Proyecto final de carrera, Departament LSI, Universitat Politècnica de Catalunya (2003)
Walter, J., Ritter, H.: Rapid learning with parametrized self-organizing maps. Neurocomputing 12, 131–153 (1996)
Walter, J., Schulten, K.J.: Implementation of self-organizing neural networks for visuo-motor control of an industrial arm. IEEE Trans. on Neural Networks 4 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Angulo, V.R., Torras, C. (2005). Using PSOMs to Learn Inverse Kinematics Through Virtual Decomposition of the Robot. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_86
Download citation
DOI: https://doi.org/10.1007/11494669_86
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)