Abstract
In this paper we present CIDIM (Control of Induction by sample DIvision Method), an algorithm that has been developed to induce small and accurate decision trees using a set of examples. It uses an internal control of induction to stop the induction and to avoid the overfitting. Other ideas like a dichotomic division or groups of consecutive values are used to improve the performance of the algorithm. CIDIM has been successfully compared with ID3 and C4.5. It induces trees that are significantly better than those induced by ID3 or C4.5 in almost every experiment.
This work has been partially supported by the MOISES project, number TIC2002-04019-C03-02, of the MCyT, Spain.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)
Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree restructuring. Machine Learning 29, 5–44 (1997)
Folino, G., Pizzuti, C., Spezzano, G.: A cellular genetic programming approach to classification. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1015–1020. Morgan Kaufmann Publishers Inc., San Francisco (1999)
Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is np-complete. Information Processing Letters 5, 15–17 (1976)
Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W.: Boat – optimistic decision tree construction. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 169–180. ACM Press, New York (1999)
Ramos-Jiménez, G., Morales-Bueno, R., Villalba-Soria, A.: CIDIM. Control of induction by sample division methods. In: Proceedings of the International Conference on Artificial Intelligence (IC-AI 2000), Las Vegas, pp. 1083–1087 (2000)
Ruiz-Gómez, J., Ramos-Jiménez, G., Villalba-Soria, A.: Modelling based on rule induction learning. In: Computers and Computacional Engineering in Control, pp. 158–163. World Scientific and Engineering Society Press, Greece (1999)
Jerez-Aragonés, J.M., Gómez-Ruiz, J.A., Ramos-Jiménez, G., noz Pérez, J.M., Alba-Conejo, E.: A combined neural network and decision trees model for prognosis of breast cancer relapse. Artificial Intelligence in Medicine 27, 45–63 (2003)
Blake, C., Merz, C.J.: UCI repository of machine learning databases. University of California, Department of Information and Computer Science (2000)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2000)
Herrera, F., Hervás, C., Otero, J., Sánchez, L.: Un estudio empírico preliminar sobre los tests estadísticos más habituales en el aprendizaje automático. In: Tendencias de la Minería de Datos en España. Red Española de Minería de Datos, pp. 403–412 (2004)
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004) 3-900051-07-0, http://www.R-project.org
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramos-Jiménez, G., del Campo-Ávila, J., Morales-Bueno, R. (2005). Induction of Decision Trees Using an Internal Control of Induction. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_97
Download citation
DOI: https://doi.org/10.1007/11494669_97
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)