Skip to main content

Texture Segmentation Using Neural Networks and Multi-scale Wavelet Features

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

  • 1592 Accesses

Abstract

This paper presents a novel texture segmentation method using Bayesian estimation and neural networks. Multi-scale wavelet coefficients and the context information extracted from neighboring wavelet coefficients were used as input for the neural networks. The output was modeled as a posterior probability. The context information was obtained by HMT (Hidden Markov Trees) model. The proposed segmentation method shows performed better than ML (Maximum Likelihood) segmentation using the HMT model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haralick, R.M.: Statistical and Structural Approaches to Texture. Proc. IEEE 67(5), 786–809 (1979)

    Article  Google Scholar 

  2. Reed, T.R., du Buf, H.J.M.: A Review of Recent Texture segmentation and Feature Extraction Techniques. CVGIP: Image Understanding 57(3), 359–372 (1993)

    Article  Google Scholar 

  3. Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.): The Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific Publishing Co., Singapore (1998)

    Google Scholar 

  4. Tuceryan, M.: Moment Based Texture Segmentation. In: Proc. of 11th international Conf. on Pattern Recognition, The Hague, Netherlands (August 1992)

    Google Scholar 

  5. Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support Vector Machine for Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(11), 1542–1550 (2002)

    Article  Google Scholar 

  6. Voorhees, H., Poggio, T.: Detecting textons and texture boundaries in natural images. In: Proc. of the first international Conf. on Computer Vision, London, pp. 250–258 (1987)

    Google Scholar 

  7. Du Buf, J.M.H., Kardan, M.S.: Texture Feature Performance for Image Segmentation. Pattern Recgonition 23, 291–309 (1990)

    Article  Google Scholar 

  8. Chen, Z., Feng, T.J., Houkes, Z.: Texture segmentation based on wavelet and Kohonen network for remotely sensed images. In: IEEE International Conf. on Systems, Man, and Cy-bernetics, Tokyo, Japan, pp. 816–821 (1999)

    Google Scholar 

  9. Jiang, X., Zhao, R.: A new method of Texture segmentation. In: IEEE International Conf. on Neural Networks and Signal Processing, Nanjing, China, December 14–17, pp. 1083–1086 (2003)

    Google Scholar 

  10. Hu, R., Fahmy, M.M.: Texture Segmentation Based on a Hierarchical Markov Random Field Model. Signal Processing 26, 285–305 (1992)

    Article  Google Scholar 

  11. Jain, A.K., Farrokhnia, F.: Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognition 24, 1167–1186 (1991)

    Article  Google Scholar 

  12. Choi, H., Baraniuk, R.G.: Multiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models. IEEE Transaction on image processong 10(9) (2001)

    Google Scholar 

  13. Richard, M.D., Lippmann, R.P.: Neural Network Classifiers Estimate Bayesian a posteriori Probabilities. Neural Computation 3, 461–483 (1991)

    Article  Google Scholar 

  14. Rojas, R.: Short proof of the posterior probability property of classifier neural networks. Neural Computation 8, 41–43 (1996)

    Article  Google Scholar 

  15. Reidmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the Rprop algorithm. In: Proceedings of the ICNN, San Francisco (1993)

    Google Scholar 

  16. Fan, G., Xia, X.-G.: Improved Hidden Markov Models in the Wavelet-Domain. IEEE Transaction on signal processong 49(1) (January 2001)

    Google Scholar 

  17. Fan, G., Xia, X.-G.: Wavelet-Based Texture Analysis and Synthesis Using Hidden Markov Models. IEEE Transaction on circuits and systems 50(1) (January 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, T.H., Eom, I.K., Kim, Y.S. (2005). Texture Segmentation Using Neural Networks and Multi-scale Wavelet Features. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_59

Download citation

  • DOI: https://doi.org/10.1007/11539117_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics