Skip to main content

Regular Derivations in Basic Superposition-Based Calculi

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005)

Abstract

We prove the completeness of the regular strategy of derivations for superposition-based calculi. The regular strategy was pioneered by Kanger in [Kan63], who proposed that all equality inferences take place before all other steps in the proof. We show that the strategy is complete with the elimination of tautologies. The implication of our result is the completeness of non-standard selection functions by which in non-relational clauses only equality literals (and all of them) are selected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleksić, V., Degtyarev, A.: On arbitrary selection strategies for superposition. Proceedings of FTP, Technical Report of the University of Koblenz (September 2005)

    Google Scholar 

  2. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation and superposition. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 462–476. Springer, Heidelberg (1992)

    Google Scholar 

  3. Bachmair, L., Ganzinger, H.: Strict basic superposition and chaining. Research report MPI-I-97-2-011, Max-Planck-Institut für Informatic, Saarbrücken

    Google Scholar 

  4. Bofill, L., Godoy, G.: On the completeness of arbitrary selection strategies for paramoduletion. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 951–962. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Bofill, L., Rubio, A.: Well-foundedness is sufficient for completeness of ordered paramodulation. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 456–470. Springer, Heidelberg (2002)

    Google Scholar 

  6. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 613–706. Elsevier Science Publishers B.V, Amsterdam (2001)

    Google Scholar 

  7. Degtyarev, A., Voronkov, A.: Handling equality in logic programs via basic folding. In: Herre, H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS, vol. 1050, pp. 119–136. Springer, Heidelberg (1996)

    Google Scholar 

  8. Kanger, S.: A simplified proof method for elementary logic. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning. Classical Papers on Computational Logic, vol. 1, pp. 364–371. Springer, Heidelberg (1963) (Originally appeared in 1963)

    Google Scholar 

  9. Moser, M., Lynch, C., Steinbach, J.: Model Elimination with Basic Ordered Paramodulation.

    Google Scholar 

  10. Lynch, C.: Oriented Equational Logic is Complete. Journal of Symbolic Computations, 23(1):23–45 (1997). Technical Report AR-95-11, TU München (1995)

    Google Scholar 

  11. Nieuwenhuis, R., Rubio, A.: Basic superposition is complete. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582, pp. 371–389. Springer, Heidelberg (1992)

    Google Scholar 

  12. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 3–73. Elsevier Science Publishers B.V, Amsterdam (1999)

    Google Scholar 

  13. de Nivelle, H.: Ordering refinements of resolution. Dissertation, Technische Universiteit Delft, Delft (1996)

    Google Scholar 

  14. Robinson, G., Wos, L.: Completeness of paramodulation. Journal of Symbolic Logic 34(1), 159–160 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aleksić, V., Degtyarev, A. (2005). Regular Derivations in Basic Superposition-Based Calculi. In: Sutcliffe, G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11591191_21

Download citation

  • DOI: https://doi.org/10.1007/11591191_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30553-8

  • Online ISBN: 978-3-540-31650-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics