Abstract
This paper addresses the problem of computing symbolically the set of reachable configurations of a linear hybrid automaton. A solution proposed in earlier work consists in exploring the reachable configurations using an acceleration operator for computing the iterated effect of selected control cycles. Unfortunately, this method imposes a periodicity requirement on the data transformations labeling these cycles, that is not always satisfied in practice. This happens in particular with the important subclass of timed automata, even though it is known that the paths of such automata have a periodic behavior.
The goal of this paper is to broaden substantially the applicability of hybrid acceleration. This is done by introducing powerful reduction rules, aimed at translating hybrid data transformations into equivalent ones that satisfy the periodicity criterion. In particular, we show that these rules always succeed in the case of timed automata. This makes it possible to compute an exact symbolic representation of the set of reachable configurations of a linear hybrid automaton, with a guarantee of termination over the subclass of timed automata. Compared to other known solutions to this problem, our method is simpler, and applicable to a much larger class of systems.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)
Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis method for strongly linear hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 167–177. Springer, Heidelberg (1997)
Boigelot, B., Herbreteau, F., Jodogne, S.: Hybrid acceleration using real vector automata. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 193–205. Springer, Heidelberg (2003)
Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic with integer and real variables. ACM Transactions on Computational Logic (TOCL) 6(3), 614–633 (2005)
Bardin, S., Leroux, J., Finkel, A., Petrucci, L.: FAST: Fast accelereation of symbolic transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)
Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed automata: Forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005)
Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Université de Liège (1998)
Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003)
Bengtsson, J., Yi, W.: On clock difference constraints and termination in reachability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003)
Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)
Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)
Fribourg, L.: A closed-form evaluation for extended timed automata. Research Report LSV-98-2, LSV (March 1998)
Henzinger, T.A.: The theory of hybrid automata. In: Proc. 11th Annual Symp. on Logic in Computer Science (LICS), pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)
The Liège Automata-based Symbolic Handler (LASH), Available at: http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
Revesz, P.Z.: A closed-form evaluation for datalog queries with integer (gap)- order constraints. Theor. Comp. Sc. 116(1&2), 117–149 (1993)
Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: ISSAC: Proceedings of the ACM SIGSAM Int. Symp. on Symbolic and Algebraic Computation, Vancouver, pp. 129–136. ACM Press, New York (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boigelot, B., Herbreteau, F. (2006). The Power of Hybrid Acceleration. In: Ball, T., Jones, R.B. (eds) Computer Aided Verification. CAV 2006. Lecture Notes in Computer Science, vol 4144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11817963_40
Download citation
DOI: https://doi.org/10.1007/11817963_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37406-0
Online ISBN: 978-3-540-37411-4
eBook Packages: Computer ScienceComputer Science (R0)